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Executive summary  
The TREMOR neurorobot comprises a Brain Neural Computer Interface that monitors the whole 
neuromusculoskeletal system, aiming at characterizing both voluntary movement and tremor, and a Functional 
Electrical Stimulation system that compensates for tremorous movements without impeding the user perform 
functional tasks. This document will describe the work developed in the framework of WP4 in order to extract both 
voluntary movement and tremor information, and deliver 1) the intention to perform voluntary movement, 2) 
tremor onset, and 3) tremor frequency and amplitude at each anatomical joint in a Real-Time, recursive and 
adaptive implementation. Preliminary experimental results are used to illustrate the performance of the different 
modalities of this BNCI interface. 

 

Change history record 
The overall content of this document has been kept with respect to the previous version (V2.0) approved in a 
previous review. The unique change of this new version is the inclusion of a study (included as Annex 2 to this 
document) carried out by the consortium in order to address recommendation 6 of the second review meeting: 

R6: The BCI prediction of voluntary movement has led to promising experimental results in the lab 
environment. However, precision and recall drastically change from one patient to another. The 
consortium is advised to investigate on which class of patients the method works best. 
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1. Introduction 
The TREMOR neurorobot monitors the neuromusculoskeletal system to characterize both concomitant voluntary 
and tremorous movements based on a Brain Neural Computer Interface (BNCI), and then stimulates upper limb 
muscles to compensate functionally for the tremor. As all wearable robots, the major characteristic of the 
TREMOR neurorobot is its strong interaction with the user, [68]. This interaction is both physical and cognitive, 
and happens in a bidirectional manner. In our case, the cognitive Human–Robot Interface (cHRI) is built upon a 
BNCI that assesses the generation, transmission, and execution of both voluntary and tremorous movements. On 
the other hand, the physical Human–Robot Interface (pHRI) comprises a multichannel FES system that 
selectively drives the muscles based on the output of the control algorithm, Figure 1. 

 
Figure 1. Concept design of the TREMOR neurorobot, showing both physical and cognitive interfaces (pHRI and cHRI 

respectively). 

The BNCI comprises recording of electroencephalographic (EEG) and electromyographic (EMG) activity, to- 
gether with motion capture with inertial measurement units (IMUs). Each sensor modality aims at extracting 
certain information, following a hierarchical integration scheme. First, a real–time EEG classifier is in charge of 
detecting user’s intention to perform a voluntary movement, waking up the system. Next, processing of sEMG 
information yields tremor onset and an estimation of its frequency. Finally, IMUs track instantaneous tremor 
amplitude and frequency at each joint. This hierarchical integration scheme is summarized in Figure 2. 

 
Figure 2. Integration of sensor modalities to drive FES based tremor suppression. First, EEG monitors if the user intends to 
perform a voluntary motion. Once this has been detected, tremor onset is derived from EMG information . Finally, after the 

system detects tremor will appear, tremor parameters are tracked based on IMUs. 
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The use of multiple sensor modalities also permits us implementing fusion and redundancy techniques to 
enhance the dependability of the system. One example of redundancy is the use of EMG activity to detect the 
occurrence of a motor command, compensating for eventual EEG classification errors. An example of sensor 
fusion is the use of machine learning techniques to adjust the parameters of the EEG classifier after the execution 
of a movement, as detected with IMUs. 
This deliverable describes the work developed in WP4: “Multimodal BCI for tremor identification, characterization 
and tracking”. This WP was coordinated by Consejo Superior de Investigaciones Científicas (CSIC) and led by 
Prof. J.L. Pons. The objectives of this WP are:  

(1) To develop a BCI system based on motor bioelectrical activity (CNS and PNS) of the subject. The 
system should deliver voluntary movement intention and tremor onset at each muscle group in all 
anatomical joints defined in WP1 and WP2;  

(2) To complement the BCI system with biomechanical information (from solid state accelerometers and 
gyroscopes) to fully characterize tremor at each joint; 

(3) To test BCI algorithms both with data obtained from DRIFTS databases (laboratory tests) and with users 
after programming the BCI on the control architecture of WP3; 

(4) To evaluate the dynamics of tremor, i.e. tremor migration and tremor fluctuation, under the application of 
load. 

In order to reach these objectives, the following tasks were defined: 

1. Development of algorithms to identify user’s voluntary motor commands. This task will develop 
algorithms to be used by the multimodal BCI system in order to identify user intentionality to perform an 
upper limb voluntary movement. 

2. Development of algorithms to identify tremor onset. Based on the information provided by the EMG 
sensors placed over the upper limb of the patient, the algorithms developed in this task will be able to 
identify the onset of tremor movement. 

3. Development of inertial sensor subsystem. This task was responsible for the development of the inertial 
sensor system. This system should provide information about joint acceleration, velocity and position. 

4. Development of algorithms for tracking and extraction of tremor characteristics. Algorithms for tracking 
and identification of tremor characteristics based on the information provided by the inertial sensors at 
each anatomical joint will be developed in this task. 

5. Algorithms for modality fusion. A sensor fusion scheme from the different modalities (EEG, EMG and 
IMU) will deliver to the controller the required information to the controller. 

The next sections of this document will describe the work carried out in each of these tasks. 
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2. Development of algorithms to identify user’s voluntary motor commands 
This section summarizes work on task WP4.1 named Development of algorithms to identify voluntary motor 
commands. This task aims at developing a BCI system, based on the motor bioelectrical activity of the user, 
which should deliver voluntary movement intention.  

This task is led by CSIC, and three partners have taken part in it, ULB, URT, and CSIC. The partners have held a 
number of telemeetings in order to coordinate and exchange information. Moreover, to maximize the outcome of 
the work of the different partners, CSIC proposed to adopt a standardization of the experimental and analytical 
procedures consisting of: defining a common set of experimental and recording options, creating a shared 
experimental database, testing on it any proposed algorithm, sharing partner experiences, selecting the most 
effective algorithms, and integrating the resulting ones. 

In order to develop the algorithms that identify intentionality to perform voluntary movements in tremor patients, 
the following work plan was followed: 

- Specification of the requirements for the identification procedure to be implemented 
- Searching a detectable physiological phenomenon that informs about the patient motor intention and 

that fulfills the requirements 
- Designing a standard experimental protocol to collect data from patients 
- Analysis of the collected data, proposal of a reliable identification procedure based on that phenomenon, 

and testing it both on patients and control subjects performing motor tasks habitually used in clinical 
assessment of tremor. 

- Identification, based on the previous analyses, which approach provides the best solution for the 
detection of movement intention in tremor patients. 

The physical requirements for the BCI —minimal risks, low cost, portability, high temporal resolution, and fast 
time response— were early considered during the project proposal preparation, when EEG was selected as the 
most appropriated technique to implement the BCI. In the current project stage, the following additional 
requirements were specified for the identification procedures according to our goal and application context: 

- Reliability 
- Predictability 

The identification of the voluntary motor commands must be reliable and, in particular, robust against the 
involuntary movements (tremor). To meet this goal two actions were taken: using state of the art identification 
procedures and redundant information sources (EEG + sEMG + IMUs). On the other hand, the voluntary motor 
command identification also must be predictive in order to allow an anticipative control for the tremor suppression 
machinery. The fulfilling of this requirement again relied on the current knowledge on EEG. 

State of the art 
There are a number of physiological phenomena that are related to the preparation, execution, and posterior 
return to basal brain activity, which are reported in the literature. The most studied phenomena are the readiness 
potential or Bereischaftspotential, [76], the event related desynchronization and resynchronization (ERD / ERS), 
[72], and the changes in corticomuscular coherence, [75]. All these phenomena were considered as potential 
features to develop our algorithm to detect movement intention. It should be notice that, to the partners’ 
knowledge, no work focusing on prediction of movement execution is reported in the literature. 

The BP corresponds to the early stage of the Movement Related Cortical Potentials (MRCP), which are the 
variations of the DC amplitude of the EEG signal related to the execution of motor. The BP consists in a reduction 
of the DC signal amplitude preceding a voluntary movement. This phenomenon is also divided in two intervals: 
the "early BP" and the "late BP". The "early BP" begins about 2 seconds before the movement onset, and is more 
prominent over the presupplementary motor area (preSMA) and the supplementary motor area (SMA). Before the 
movement onset (400 ms of anticipation), a steeper decay of the DC signal amplitude, which corresponds to the 
second stage of the BP, the "late BP", can be observed. This second variation of the DC signal slope is best 
detected over the primary motor area (M1), [69,76]. 

Oscillations at ~20 Hz in the EEG in humans are coherent with the surface electromyogram during sustained 
contractions. This is normally designated as CMC, [1, 71]. This observation indirectly indicates the effective 
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transmission of cortical activity through the corticospinal tract and the monosynaptic connections between cortical 
neurons and spinal motorneurons, [72]. As the cortico-muscular coherence represents the linear coupling 
between EEG and sEMG signals in the frequency domain, in the literature, coherence contributions in the beta 
band (15-30 Hz) have been associated to voluntary movement and thus used as a detection index for the 
movement intent. 

The ERD is also a neurophysiological phenomenon that anticipates the voluntary movement. The ERD refers to 
the decrease of the EEG signal power in the alpha and lower-beta bands related to the performance of motor 
tasks, [11]. It begins about 2 seconds before the movement onset in the case of voluntary movements. This 
desynchronization normally begins over the contralateral hemisphere for movements performed with the 
dominant arm. The cortical oscillations are supposed to be the means by which the different regions in the brain 
communicate with each other. The frequencies at which this communication takes place depend strongly on the 
size of the pool of neurons working synchronously, and on the distance between the brain regions participating in 
the specific mental task. The specific case of planning a motor task increases the complexity of the neural 
networks in the motor cortex and smaller parts of this region become more specific. This causes a decrease of 
the power in the alpha and lower-beta bands within the motor cortex and an increase of power in higher 
frequencies, in order to reduce energy consumption while performing the task optimally, [74]. 

The specific characteristics of the ERD have been well studied during the last decades, [11], and many BCI 
systems are based on this feature of the EEG signal during movements, [8, 75]. Nevertheless, only a few studies 
with ERD take advantage of its anticipatory characteristic, and most of them present synchronous-BCIs 
discriminating between pre-defined tasks, [70]. In the present year, a system developed by Bai et al., [73], 
presents an online asynchronous BCI detecting the movement intentionality with healthy subjects (to our 
knowledge, no other studies have been published facing this paradigm so far). The system evaluates the best 
features of the signal spectrum and decides whether a voluntary movement is about to be performed.  However, 
this work has only been tested with control subjects (22.6 +/- 2.4 years old), including a visual system to avoid 
performing movements when artifacts are measured and using 27 electrodes for the calibration session, which 
takes up to 30-40 minutes. The system proposed by Bai et al. aims at reducing false positives, which can be an 
important criterion for systems that only depend on the EEG measurements but not for applications including 
redundant information of the motor activity from different sensors placed on the body, as in the case of the 
TREMOR neurorobot. 

Moreover, we have identified the following requirements for the specific context of TREMOR project:  

- Robustness against tremorous movements. 

- Voluntary movement detection must be predictive, in order to allow an anticipative control. 

In agreement with this, we decided to base the identification procedure on the event related desynchronization 
and resynchronization (ERD / ERS) phenomena that underlies the motor activity. Both are observable on the 
EEG central mu rhythm, whose features were first described by Gastaut et al. in 1952. Since then, the behavior of 
this rhythm with regard to voluntary movements has been largely studied. Interestingly, mu rhythm changes from 
a synchronized into a desynchronized mode when a voluntary movement is initiated, and the ERD precedes 
about 2 seconds the movement onset. The other two phenomenon were discarded due to the following issues:  

- Bereitschaftspotential. This potential was initially considered since it starts about two seconds before the 
movement onset. It was not used finally because of its large time-constant.  

- Cortico-muscular coherence. URT carried out a preliminary evaluation of this approach. They concluded 
that its high computational requirements hinder its application in real time scenarios. Annex 1 
summarizes the evaluation performed by URT of this technique. 

Intention detection is facilitated by the stated knowledge about brain topography, signal amplitude, and frequency 
response of the ERD in the generality of healthy people. Nevertheless, the feasibility to detect the patient’s motor 
intention heavily depends on the extent to which the EEG patterns associated to ERD can be reliably recognized 
automatically. The main obstacle to achieve this goal is that these patterns are contaminated by spontaneous 
EEG activity, and the resulting signal to noise ratio is very low. Other immanent problem to the technique is the 
variability among subjects. Being an additional obstacle, specific for our project, the brain damages and 
alterations suffered by tremor patients, and the lack of knowledge about how they could affect the ERD/ERS 
phenomenon. 
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2.1.  Experiments  
After selecting the neurophysiological phenomenon, there are still many possible identification strategies that 
could be considered. This makes it difficult to share experiences among partners and to integrate separately 
developed algorithms. Therefore, CSIC proposed to adopt a standardization of the experimental and analytical 
procedures consisting of: defining a common set of experimental and recording options, creating a shared 
experimental database, testing on it any proposed algorithm, sharing partner experiences, selecting the most 
effective algorithms, and integrating the resulting ones. 

The experimental protocol was designed by CSIC with inputs from ULB and URT. It defined very thoroughly: 
instructions to patients, tasks to be carried out by patients, number and frequency of the movements to perform, 
movement amplitude and speed, clues given to patients during the task performing, exact timing for each and 
every event, etc. The data-recording configuration specified: magnitudes to be acquired, sensor and electrode 
locations, references and ground locations, sampling rates, on line-filtering, etc. The experiments were designed 
in such a manner that could facilitate the later investigations on the detection of the movement intention in 
patients affected by tremor. 

2.1.1. Patients 
Up to now, two series of experimental sessions have been arranged in the frame of the TREMOR project; both of 
them were held in Brussels Hopital Erasme with controls and patients suffering from pathological tremor.  

6 patients and 3 controls participated in the first series of experimental sessions (January, 2010). Four more 
patients (3 of them also measured in the first sessions) participated in the second series of sessions (March, 
2010). The following tables summarize the clinical information of the patients that participated in the study. 

Patient Sex Age Kind of tremor 
Grade of 
tremor 
(max) 

Schwab 
and 

England 
ADL 

Nourie-
Lincoln 

ADL 

001 M 82 Rest, portural and kinetic 2 70% 18/22 

002 M 74 Rest and postural 2 100% 22/22 

003 F 61 Postural and kinetic 2 90% 22/22 

006 F 34 Postural and Kinetic 1 80% 17/22 

007 M 52 Rest and postural 3 80% 19/22 

008 M 48 Postural and Kinetic 2 60% 20/22 

009 F 74 Posural and Kinetic 1 80& 18/22 

010 M 65 Kinetic 2 30% 3/22 

012 M 37 Rest, postural and kinetic 4 50% 11/22 

014 M 23 Rest, postural and kinetic 2 80% 21/22 

Table I. Clinical information of the patients included in the study. The functional scales used to evaluate the patients were 
described in deliverable D1.1. 

Number of patients 10 

Age (mean±SD) 55±19.5 

F/M 3/7 

RSchawab and England ADL score (mean±SD) 72 ± 20.4 

Nourie-Loncoln ADL score (mean±SD) 17 ± 5.9 

Table II. Summary of the patients included in the study. 
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2.1.2. Protocol 
The protocol followed was first tried with healthy volunteers to assert its feasibility in terms of duration, fatigue 
generated and ease of execution. A flowchart describing a series of sessions is represented in Figure 3. 

Figure 3. Flowchart of a serie of sessions. 

During the experiments, each patient measured was sitting in a comfortable chair while the technicians placed the 
equipment in a correct manner. Before the recording started, the patient was asked to avoid artifacts (like eyes 
blinking, eyes moving or chewing) and to remain still, without moving any part of the body but the limb with which 
the task had to be performed. The preparation time took an average of 1 hour and a half per patient. After it, 6 
runs of repeated task executions were accomplished. A resting time was stablished every two runs to avoid 
patient’s fatigue (Figure 4). 

Deploy equipment 
 
Prepare the experimental 
facility 
 
 

Perform a rehearsal with a 
healthy subject. Check 

everything along 1 run / task 
 

Perform and record a 
full session 

Have all patients participated? 

Have control subjects performed all tasks? 

Select the assigned task to him 
or her 

Y 

N 

STOP 

Select a patient or a control 
subject 
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Figure 4. Flowchart of a session with one patient. 
In each one of the 6 runs, the patients were asked to stay steady and to perform periodically a motor task 
consisting of driving the right hand index to the nose and back to the rest position (Table I). An acoustic reference 
was reproduced 10 seconds after each movement onset to indicate the subjects when they could start with a new 
trial. This reference assured a long enough separation between two consecutive trials for the patient’s brain to get 
back into a basal state. 

Subjects were requested to wait for a short period of time after each acoustic reference. The movement 
executions that didn’t satisfy a condition of more than 3 seconds between the acoustic indication and the next 
movement were removed in the posterior analysis (typically, the desynchronization in voluntary movements starts 
2 seconds before the onset of the movement, [8], and the duration of the evoked potential caused by the acoustic 
reference is less than 1 second). 

Thus, each valid trial consisted of an initial acoustic reference time followed by a self-chosen period of no motor 
activity (higher than 3 seconds), an execution of the motor task and an additional period of time of no motor 
activity (Figure 5). 
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Perform the Run # 6 

Allow a 4-minutes pause for 
patient rest 

STOP 

Perform the Run # 1 
Perform the Run # 2 
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Allow a 4-minutes pause for 
patient rest 

Instruct patient on the task 

Check task execution 
 
Check signals validity 
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Figure 5. Time scheme of one run. 
A total of six sessions of 3 minutes and 30 seconds were recorded for each patient, which resulted in an average 
set of 60 trials performed by each one of the measured patients. The average time between movement 
executions was 22+/-7 s. 
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Seat type Chair 

Resting position Comfortably seated and relaxed 

 Arms and hands The ulnar part of the hand is touching the distal third region of the thigh (tape on 
thigh for localization) 

 Legs and feet Feet rest over marked positions on the ground 

Task  

 Description At a self-chosen moment, after about 5 seconds of hearing the acoustic indication, 
the patient imagines and immediately afterwards with the dominant arm executes 
the task by touching the nose with the index finger. The movement starts from, and 
returns to, the rest position on the thigh. 

 Specifications The index is pointing forward initially. The index has to touch the nose, to remain on 
it for about 1 second and then to come back to the thigh at the starting position. 
Examiner asks the subject to perform the movement slowly and with accuracy 

 Patient instructions Acoustic indication: “allez-y” 

Body control during 
tasks 

Eyes open. Mouth lightly opened. Jaw relaxed. Restrain any head movement. Avoid 
blinking and swallowing. 
It is mandatory to imagine and execute the task at least 3 seconds after the acoustic 
indication. 

Table III. Specifications for task finger-to-nose (FN) 
2.1.3. Sensors 
EEG signals were recorded from thirteen positions over the motor area (FC3, FCz, FC4, C5, C3, C1, Cz, C2, C4, 
C6, CP3, CPz and CP4 of the international 10-20 system) (Figure 6) with a gTec amplifier and Au scalp 
electrodes. The reference was set to the common potential of the two earlobes and POz was used as ground. 
The amplifier was set to filter the signal between 0.5 and 60 Hz, and an additional 50-Hz notch filter was used.  

 
Figure 6. Electrodes placement 
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Synchronized with the EEG acquisition, movements of the right arm and hand were characterized by means of 
EMG (EMG-USB amplifier OT Bioelettronica, Torino, Italy) and inertial sensors (manufactured by Tech MCS, 
Madrid, Spain). The inertial sensors communicated with a PC running QNX Neutrino (QNX Software Systems, 
Ontario, Canada), which was also in charge of sending the synchronization pulse at the beginning of each run to 
the two amplifiers (EEG and EMG) and a set of pulses each one of them corresponding to each movement onset 
detected (Figure 7). For more information on the measurement platform please refer to deliverable D7.1. 

 
Figure 7. Scheme of the interconnected measuring devices. 

The data including the EEG recordings, the times at which the movement onsets were detected and the acoustic 
references was stored at a sampling frequency of 256 Hz for posterior offline analysis (Table IV). Likewise, the 
EMG data of the four muscular groups involved in the FN task (extensors, flexors, biceps and triceps) was stored 
at a sampling frequency of 2048 Hz including the initial synchronization pulse (Table V). Finally, the inertial 
sensors information of three points in the right arm was stored at 50 Hz (Table VI). 

EEG electrodes type Conventional, passive Au electrodes 

EEG electrode locations FC3,FCz,FC4,C5,C3,C1,CZ,C2,C4,C6,CP3,CPZ,CP4 

Ground location POz 

Reference location Linked ear-lobes 

EOG electrode locations At the right eye: 1 below + 1 on the right  

Sampling rate 256 Samples / second 

EEG Filters (type/band) Notch for 50Hz. Band-pass for 0.5–60Hz 

EOG Filters (type/band) Notch for 50Hz. Band-pass for 0.5–60Hz 

Table IV. EEG  sensors placement and amplifier configuration 
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EMG electrodes type Semi-disposable adhesive EMG matrices 

Location(s) - biceps brachii 
- triceps brachii 
- flexor carpi radialis 
- extensor carpi ulnaris 

Sampling rate 2048 Samples / second 

Reference location Wet wrist bracelet 

EMG Filters (type/band) Band pass for 10 - 750 Hz. 

Table V. EMG sensors placement and amplifier configuration 

 
IMU sensors type Each IMU contains 3D accelerometer, gyroscope, and magnetometer 

Location(s) - Third metacarpal. 
- Edge of the forearm, dorsal side. 
- Olecranon process. 

Sampling rate 50 Samples/ second 

IMU filters (type/band) None 

Table VI. Inertial sensors placement and configuration 
2.2.  Data Analysis 
The main role of the EEG-based detector developed in the TEMOR project is to provide information about the 
movement intention of the subjects measured. The system must be able to work continuously and be a usable 
solution for activities of daily living. This requirements lead to two main consequences that have been addressed 
in our proposal: 

- The reduced number of electrodes used allows the system to be thought of as a daily usable solution, as 
stated in the DoW. 

- The system is specifically developed for running online, continuously checking whether the cortical 
electrical activity measured corresponds to a premovement state and avoiding the usage of external 
cues as timing references, which means that our EEG based detector works as an asynchronous-BCI, 
[9]. 

As the detector is supposed at first to work at the same time as the inertial and EMG sensors, its contribution to 
the global system relies on the principal lack of these other two sensing devices: motor activity characterization 
by means of IMUs and EMG can only be achieved once the movement has been initiated, so the anticipative 
feature of the ERD phenomenon is the main criterion for developing and optimizing the EEG-based detector. 

Moreover, as the detector system must be capable of working on different subjects, it has to be able to adapt its 
internal processing and classifying parameters to each specific person wearing the system, and this is also an 
essential aspect addressed in our detector design. 

2.2.1. A Bayesian Classifier to Detect Event Related Desynchronization  
In order to fulfill the previous requirements, CSIC has developed a Bayesian classifier assessing features as the 
absolute power of the EEG signal over the motor area in subject-dependent locations, time-windows and 
frequencies. The main advantages of a Bayesian classifier are that it is computationally efficient and it easily 
allows being online configured, adapting its parameters to the ongoing measurements. 

Finally, as will be pointed out in the results section, since the classifier is going to work online and continuously, 
its validation will be based on events instead of performing a classical sample-by-sample analysis. 
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System description 
From the literature referring to the ERD phenomenon and our own experience analyzing the EEG data of patients 
with pathological tremor during consecutive executions of movements, the main issues to take into account when 
characterizing the ERD in the intervals of EEG data preceding a certain voluntary movement are: 

- This desynchronization is best seen over the motor area, and it presents different desynchronization 
patterns in the ipsilateral and the contralateral areas; 

- It may be detected in both the alpha and beta bands and the specific frequencies at which it is most 
prominent are subject-dependent; 

- The desynchronization lasts around 3-4 seconds when executing simple tasks and this length changes 
for each trial and between subjects. 

These three characteristics show a certain degree of variability among subjects, so it becomes important to adapt 
the classifier for each subject measured, using as training reference the previous trials measured in a scenario 
where the classifier works continuously. 

The Bayesian classifier we propose is based on these relevant aspects and it learns online its internal parameters 
in order to detect the desynchronization phenomenon the best way possible. Thus, the classifier looks for (Figure 
10): 

- The frequencies in the alpha and beta bands at which the ERD phenomenon is best observed (Figure 
8); 

- The electrode positions where the highest differences (in the optimal frequencies), between the basal 
(resting period) and movement states are found (Figure 7). As a Laplacian filter is used to improve the 
spatial resolution, in this step the electrodes analyzed are C3, Cz and C4 (these are the only electrodes 
that can be spatially filtered since they are the only ones surrounded by four other electrodes, as can be 
seen in the experimental setup described in the previous section (Figure 6)); 

- The best time window length for estimating the desynchronization (Figure 9).   

 
Figure 8. Scheme of the automatic detection system of the optimal frequencies and channels. The EEG data of a specific 
subject measured is first divided into basal and movement intervals (top). The comparison of spectra of the basal and the 

movement states is carried out along the different channels and frequencies to detect which combinations of these two 
parameters are optimal in terms of the two states distinction (bottom). 
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Figure 9. Automatic detection of the observing window length. 

The selection of optimal frequencies, channels and time windows is accomplished online, by processing the 
movement intervals of the previous trials acquired, Figure 10. The time locations of these previous movement 
executions are obtained from a control signal received from the IMUs block, which reports the onset of each one 
of the movements executed, Figure 7. 

 
Figure 10. Flow chart of the movement intention detector. The Bayesian classifier, as well as the band-pass filters, the 

threshold and the time window for power estimating are updated by means of the IMUs feedback. 

The Bayesian classifier is used for determining whether a movement is about to start. It uses as input features the 
absolute power in each combination of the optimal channels, frequencies and time windows. The output 
probability of the classifier is then converted into a binary signal by applying a threshold, which is selected by 
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defining the minimum recall accepted when classifying the training dataset (where recall is the amount of 
movements anticipated and will be further specified in the results section). 

In order to train the classifier, the absolute power measured of the previous movements is used to generate the 
probability curves for the absolute power in each channel-frequency combination. 

This implementation of a Bayesian classifier evaluating the absolute power of the alpha and beta rhythms gives 
rise to an automatic system with low computational load when classifying in real-time.  

Results 
The results shown here have been obtained by means of an offline 5-fold cross-validation test among the six 3-
minute sessions of each patient (as described in the protocol section).  

Each classification of a session uses as training dataset the pre-movement time windows of the movements 
performed in the rest of the sessions. The test sessions are classified continuously (the complete 3 minutes and 
30 seconds session is analyzed, as in an online scenario), without removing artifacts. The intervals where the 
acoustic references sounded aren’t removed either. 

In order to evaluate the classifier performance we select an analysis mode based on events instead of a sample-
by-sample test. This means that the parameters selected for the validation and optimization of the detector are 
based on activation units (AU), which are the temporal intervals in which the classifier identifies the premovement 
state with a probability over the decision threshold. The reason why we evaluate the events of classification 
instead of the samples is that a group of consecutive single activations of the classifier are likely to correspond to 
a same process in the cortical activity (which tends to vary at a slow rate in comparison with the classifier), so 
these consecutive activations must be considered as a singular classification, [10]. 

According to this approach, we define the conditions for an AU to be classified as a true-positive classified event 
(TP) or as a false positive classified event (FP) and two indicators for testing the classification results based in 
these two values: 

 

Where 
TP (true positives): number of AUs intersecting or containing the interval [−0.5 : 0]. 
FP (false positives): number of AUs intersecting the interval (Movement Ending : −0.5). 
FN (false negatives): number of non detected movements. 
Activations which are only present during the movement execution aren’t taken into account 

The criteria chosen for defining an AU as a TP or FP fit the classifier specifications and the training characteristics 
of our detector: the aim is to detect a movement before it is performed and thus the movement preceding 
intervals are chosen for the training stage. 

Based on these criteria, the results achieved for the four patients are shown in Table 5 where the Precision and 
the Recall results are obtained over the 6 test sessions measured with each one of them. The classifier is able to 
anticipate 85% of the movements executed in the best case (patient 4), generating a small amount of wrong 
activations. An average precision result of 46.5% represents a reduced percentage of false activations 
considering the fact that, during the protocol proposed for this study, the 82% of the time represents a basal state 
of the subject, while the pre-movement condition is found just in the 2% of the time measured (the rest 16% of the 
time corresponds to the movement intervals). A classified run of the patient 4 is shown in Figure 11. 
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Patient Precision Recall Mean AU 
length 

Mean 
anticipation 

1 45% 50% 1.41 s 0.29 s 
2 34% 75% 0.45 s 0.55 s 
3 47% 68% 1.70 s 0.16 s 
4 60% 85% 1.76 s 0.30 s 

Average 46.5% 69.5% 1.33 s 0.32 s 
Table V. Results for four patients 

Moreover, it can also be seen in Table V that the anticipation of the movement detection is for most of the cases 
higher than 250ms and the length of the activation units takes values around 1.3s. These results reflect the high 
accuracy of the detector for time location and anticipation of movement onsets. 
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Figure 11. Example of a classified session for patient number 4. Gray discontinuous vertical lines indicate the locations of 

the voluntary movement onsets (based on the IMUs information) 

Finally, it would also be important to track the motor cortex electrical activity during tasks executions different 
from the one proposed in this document consisting of performing a voluntary movement after long periods of 
inactivity. Some different situations that would be interesting to characterize are: 

- The intervals of time at which the subject wearing the system is being stimulated; 

- Motor tasks switch without stopping into a resting state between the two tasks; 

- Tasks execution in time intervals shorter than the 20 seconds periods found in our protocol proposal. 

2.3.  Real-Time Binary classifier 
The work of URT for WP 4.1 has been focused on the development of a real-time binary classifier based on an 
algorithm for the detection of ERD events as onset for the voluntary activity performed by the patients. The binary 
classification is able to distinguish, on a sample-by-sample basis, events related to movement intention from no-
movement status. The design of the algorithm is based on the well-known method proposed in [11]. Traditional 
methods for ERD/ERS detection are based on off-line averaging tecniques applied to the EEG power in alpha 
band, by using a series of triggered successive trials. This kind of approach is not suitable for the implementation 
in the TREMOR framework, where a real-time approach is needed.  

The implemented algorithm is based on the real-time envelope estimation of the power of the dereferenced EEG 
signal in the alpha band. ERD events are then detected when significant decreasing patterns of the signal power, 
with respect to a threshold calculated on a dynamically updated baseline, are present. With this approach, patient 
training is not needed.  

Details on the flow-diagram of the algorithm are described in the following: 

- EEG signal is dereferenced by means of a mean average reference algorithm, that is by subtracting the 
weighted contribution of all the recorded electrodes to the electrode chosen for the analysis. This 
procedure allows reducing the influence of fluctuations on the reference electrode in monopolar EEG 
montages. Implementation choices included using C3 and C4 as the electrodes undergoing the 
subsequent analysis. 
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- Dereferenced EEG signal is then band-pass filtered in the upper alpha band (10-12 Hz) and squared, in 
order to obtain its power. 

- The latter is then low-pass filtered by means of a two-stage filtering unit, including a non-linear and a 
linear filter. In the first stage, within an observation window of 8 samples, its central sample value is 
replaced with the range value. The second is a 0.1 Hz 1st order Butterworth low-pass filter and is 
cascaded to the previous filter. An alternative implementation of the algorithm uses a critically dampened 
filter, [12], instead of the two-stage unit, giving similar results in terms of estimation delay and envelope 
estimation accuracy.  

- The processed signal is then used for ERD detection: a baseline value, associated to a no-movement 
status, is calculated on a dynamic window of variable length, lasting maximum 4 s; if the value of the 
processed signal is below 70% of the baseline for more than 250 ms, then an ERD event is detected 
and associated with movement intention onset class. 

- Two different methods have been implemented for voluntary activity offset detection. In the first one,  the 
offset of the voluntary activity is detected from the processed EEG signal, when its value exceeds 70% 
of the baseline for more than 250 ms, [13]. In the second approach, [14], the offset of the voluntary 
movement is identified by revealing sEMG activity  offset for the relevant muscle, using a standard 
algorithm for muscular activation pattern detection (Hodge’s algoritm [15]). 

- When the offset is detected, the baseline of the processed EEG is updated. 

 
Figure 12. Flow diagram of alpha power envelope estimation for ERD detection  

Results 
The real-time classification scheme has been tested using data acquired during the consortium aquisition 
sessions in Bruxelles. Both versions of the algorithm (EEG-based offset detection and hybrid offset detection) 
have been applied on single wrist movements and on series of finger to nose (FTN) movements (8 to 11 
movements with a time span of 20 seconds between two consecutive movements), triggered by an acoustic 
signal.  
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Figure 13. Results for single wrist movement task. 

For the single wrist movement task, the correct classification rate reaches 80%,  with a mean advance value of 
1.59 s and a standard deviation of 1.09 s. Nevertheless, some false positive transitions occurred after the 
detection of the voluntary movement, possibly associated with the data variability.  

For the FTN task, results, in terms of correct classification rate, indicate that about 60% of the movements are 
correctly detected (the second version of the algorithm showing better performance with respect to the first) with a 
mean advance value of 5 s with a standard deviation of 2.3 s. These values probably include spurious ERD 
events associated with responses evoked by the acoustic trigger signal. The percentage of correct classifications 
underlines and confirms the high variability of the ERD phenomenon also in strictly controlled experimental 
conditions. 

 
Figure 14. Example of results for FTN task.  

2.4. Discussion & conclusions: 
The BCI detector of the movement intention proposed in the framework of the TREMOR project must fulfill three 
relevant aspects: 

- It is essential that the detector works online, so that it is able to trigger the tremor cancellation system 
that tremor patients will wear while performing their activities of daily living; 

- The detector must also anticipate the incoming voluntary movements. A minimum anticipation time of 20 
ms before the movement onsets is recommended so that the tremor cancellation system (EMG, IMUs 
and FES) has enough time to model the tremor before actuating; 
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- Finally, given the information redundancy as a result of measuring the motor activity by means of three 
different sources (EEG over the motor cortex and IMUs and EMG directly placed on the moving limb), 
the FP rate becomes a secondary parameter to take care of, since the wrong information coming from 
the EEG-based detector can be detected and ignored by means of the two real motor measurements 
coming directly from the limb analyzed. The TP rate, on the other hand, is a crucial parameter to 
consider and optimize. 

These requirements are correctly met by the detector presented in previous sections as could be verified in the 
results sections. The Bayesian classifier was selected as final solution of TREMOR project due to its self-learning 
characteristic, which allow the system to adapt to the different users. 

Results of this classifier indicated that the amount of time anticipated is, for most of the trials detected, over the 
minimum time needed in order for this information to be used by the posterior tremor cancellation strategies, and 
the recall rate achieved shows that for most of the people measured more than 68% of the movements are 
anticipated.  

On the other hand, it is also important to note that the mean length of the AU for the pre-movement detection 
cases is lower than 1.5 seconds, which means that the time precision of the movement onsets estimations is very 
high. 

It is nevertheless important to point out the variability of the results achieved depending on the patients (and 
subjects in general). Although most of the people present evident characteristics of desynchronization when 
averaging among trials, the single-trial classifying results change dramatically from some subjects to others and 
for patients with no visible desynchronization or with big trial-to-trial variations of the premovement activity, the 
contribution of this kind of BCI applications may not be worthy. 

In order to improve the detector’s performance, especially in the aforementioned cases where the 
desynchronization features aren’t as pronounced and stable as desired, two research lines are still to be 
evaluated. The first one would be to look for new ERD-related features that combined with the one proposed for 
our detector (the absolute power in specific bands) increased the robustness of the movement prediction. 
Secondly, a data-mining period with data measured from a particular patient could help detecting from a group of 
features extracted from the EEG recordings, those that were most relevant in a single-trial classification scenario. 
This could lead to a much more subject-specific application that could suit optimally each patient’s EEG features 
preceding the execution of voluntary movements. 

3. Development of algorithms to identify tremor onset 
This section summarizes work on task WP4.2 named Development of algorithms to identify tremor onset. This 
task aims at detecting the onset of tremor from muscular activity recorded with surface EMG (sEMG).  

This task was led by AAU, and CSIC and UNA have given support to their work. 

The following work plan was carried out: 

- To develop a computational model of EMG during tremor, which constitutes the basis upon which tremor 
characterization algorithms are proposed and evaluated. 

- To validate this computational model of EMG during tremor by comparing its outcome with recordings 
from tremor patients. 

- To propose and algorithm for tremor detection out of EMG information, and evaluate its performance 
with model data. 

- To validate the tremor detection algorithm with patients’ data. 

3.1.  Computational model of EMG during tremor 
Computational models are valuable tools to analyze interdependences of involved elements in physiological 
systems, including the genesis of pathological tremor. For example, a model of tremor based on a Hill-type 
muscle model has been developed to examine the contribution of afferent feedback to centrally generated tremor 
[16]. Similarly, other modeling studies have addressed the influence of proprioceptive reflexes and the gains in 
these reflex pathways on motor stability [17-21]. However, previous models do not include the simulations of the 
single motor unit activity and of the surface EMG signals.   
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The aim of our novel tremor model was to provide a flexible tool for the generation of surface EMG signals during 
various types of tremor and in various conditions. The different types of tremor include different frequencies and 
intensities, while the various conditions refer to varying degrees of voluntary activity. By means of model 
simulations, a wide range of simulated tremor-EMG signals can be generated easily. On the other hand, 
collecting experimentally a similar body of data would require a large patient population and a significant amount 
of time. 

The described model was implemented by integrating and expanding a large number of previously proposed 
models. This work has been presented preliminary at the ISEK and IEEE EMBC conferences conference, [22,23]. 

Figure 15 depicts the structure of the model for a single muscle. In the present study, the model included two 
muscles, reflecting the characteristics of the antagonistic muscle pair of the first dorsal interosseous muscle 
(index finger abductor) and the first palmar interosseous muscle (index finger adductor). Importantly, the model is 
flexible and expandable, i.e., the other muscle systems, potentially with more muscles, can be simulated by 
combining several single muscle models and by changing the model parameters. The FDI has been selected for 
the current (initial) model since it was the subject of a large number of previous modeling studies (e.g. [24-26]), 
and therefore a highly valid foundation for building the model was already available by drawing from these 
previous experiences.  

The model was structured as a closed-loop system. The net synaptic input for the pool of motor neurons 
innervating the muscle comprised the following: 1) descending voluntary drive from the motor cortex, 2) afferent 
feedback activity, and 3) oscillatory tremorogenic input. Descending voluntary drive from the motor cortex to the 
motor neurons of both muscles was continuously adjusted so that the simulated limb angle followed the 
predefined trajectory representing the volitional movement. This adjustment was performed using a PID 
(proportional, integral, derivative) control algorithm that was acting to minimize the tracking error, i.e., the angular 
error between the predefined trajectory and the instantaneous simulated angle. Positive output of the PID 
algorithm was used as the input for the agonist muscle, while the negative output was used as the input for the 
antagonist. This type of control algorithm has been already successfully applied to estimate neural input in a 
previous modeling study by Dideriksen et al., [26]. Apart from the descending drive, afferent feedback was also 
included as a neural input, since it has been shown that it also contributes to tremor generation, [16]. Muscle 
spindles, which are sensitive to change and the rate of change of muscle length, were implemented according to 
the description by Houk et al., [27], while Golgi tendon organs that act like force transducers were implemented 
as described by Prochazka et al., [28]. Finally, in order to simulate tremor, band-passed filtered white noise was 
superimposed to the summation of the other types of synaptic inputs. A second-order filter with the width of 1 Hz 
around the predefined tremor-frequency and with a settable gain determining the desired tremor intensity was 
used. 

Based on the net synaptic input the model of the motor neuron pool dynamics proposed by Fuglevand et al., [26], 
estimated single motor unit (MU) spike trains for the muscle (single MU discharge pattern).  Based on these 
patterns the surface EMG and the active muscle force were determined. The surface EMG was simulated by 
using a model of surface EMG generation proposed by Farina et al., [29], which allowed simulations of both 
single and multichannel EMG recordings. In the current configuration, a matrix of up to 11 x 17 electrodes with an 
inter-electrode distance of 2.5 mm could be simulated. The physiological and anatomical parameters were taken 
from the study by Keenan et al., [30] that used the same model of the surface EMG to simulate the EMG of the 
FDI.  The active muscle force was estimated by using the model of Fuglevand et al., [26], which was expanded to 
take into account force-length and force-velocity muscle properties according to the description given by Zajac, 
[31]. The passive forces due to tissue resistance at extreme limb angles and viscoelasticity (depending on the 
limb angle and angular velocity) were implemented based on the general description by Esteki et al., [32]. 
Furthermore, the external forces representing the inertial loading of the limb could be added. The sum of passive, 
active and external forces determined the net muscle force, which was proportional to the rate of change of the 
musculotendon length.  The limb angle was estimated using the laws of trigonometry based on the assigned 
anatomical properties of the limb.  
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Figure 15. Model structure. Asterisks indicate sub-models that run concurrently in both the agonist and antagonistic muscle, 

while the other sub-models run separately for each muscle. The model components are described in the text. 

3.1.1. Validation 
The model was validated by comparing the simulation results to those observed in previously published 
experimental studies focusing on EMG and single MU activity during pathological tremor.   

The characteristics of the power spectral density (i.e., the amplitude and width of the spectral peak) of the surface 
EMG and the limb angular velocity during different degrees of voluntary activation and at different tremor-
frequencies resembled those observed experimentally at low and high contraction levels in three different studies 
with a total of 82 tremor-patients (mainly Essential Tremor and Parkinson’s Disease), [33-35]. Furthermore, the 
spectral characteristics were similar to those obtained in the study by Zhang et al., [16], in which the simulations 
were conducted by varying the gains of the afferent synaptic input. Finally, the characteristics of the MU spike 
trains, visualized by interspike-interval histograms, were similar to those obtained by Christakos et al. during 
isometric contractions across a wide range of contraction levels (2-45% MVC) and with varying tremor-
frequencies (19 subjects, tremor frequency 9.2±3.1 Hz), [36].  

Figure 16 depicts the simulated angle, force, EMG, and spike train for one motor unit during simulated, sustained 
6-degree abduction (voluntary movement) with a moderate degree of 8 Hz tremor. The 8 Hz fluctuations are 
clearly visible in the simulated angle, whereas the low-frequency oscillations (<2 Hz) are due to the variability in 
the voluntary descending drive (i.e., the output of the PID algorithm). To maintain this angle against the opposing 
passive forces, a low degree of voluntary drive was required, which was reflected in the fact that the mean force 
was ~8 % of the maximum voluntary contraction (MVC) force. The single MU depicted in this example tends to 
discharge once every tremor-period (i.e., 125 ms in case of 8 Hz tremor); however, it also occasionally exhibits 
double discharges during the tremor-period.  
Figure 17 depicts the simulated EMG for the three different levels of inertial loading during tremor.  Without the 
external load, the EMG activity comprises only the phasic bursts related to tremor. Increasing the external loading 
increases the level of background EMG activity. At the 20% of MVC, which can be considered a relatively high 
contraction level with respect to the general level of muscle activity during the tasks of every day life, the 
background EMG activity largely masks the bursts related to tremor. 
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Figure 16. Representative simulation outputs. Sustained abduction of 6 degrees (voluntary movement) with  

8-Hz tremor was simulated. The desired voluntary movement (A, dashed line), generated angle (A, continuous line), 
generated force (B), agonist EMG (C) and single MU spike train (D) are shown. The simulated EMG comprises mainly the 

phasic tremorogenic bursts. The isolated MU tends to discharge once in each tremor period. The oscillations of the 
generated angle and muscle force represent induced tremor. 
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Figure 17. The simulated surface EMG for the three different levels of inertial loading during tremor. At 0% MVC, the phasic 
tremorogenic bursts are clearly visible. Higher loading increases the voluntary component of the EMG, gradually masking the 

tremorogenic activity. 

3.1.2. Conclusions 
A computational model able to simulate the limb angle, muscle force and surface EMG in various conditions of 
tremor and voluntary activation was developed. The model contains a number of sub-models, each representing 
relevant physiological elements of the motor system, most of which were based on the previously published and 
validated models. On this grounds, and based on the similarities between the characteristics of the simulation 
results and experimental observations, the model is regarded as a valid tool for providing surface EMG signals 
during tremor.  

3.2. EMG-based tremor detection algorithm 
3.2.1. Iterated Hilbert Transform 
Iterated Hilbert Transform (IHT) is a novel multi-component decomposition method developed by Gianfelici et al., 
[37]. Compared to similar methods, the novel method is both computationally efficient and in most cases more 
effective, and this makes it an ideal choice for real-time applications. The IHT shows better demodulation 
performances then Hilbert-Huang Transform developed at NASA by N. E. Huang [23], Multiband Energy 
Separation Algorithm developed at Harvard University by P. Maragos [24], and PASED developed by B. 
Santhanam [25]. The IHT allows an asymptotically exact reconstruction of nonstationary biomedical signals, 
regardless of their duration and without any limitation in the modeling. The method permits a multi-component 
AM–FM model to be derived in which the number of components (iterations) may be arbitrarily chosen. 
Additionally, the instantaneous frequencies of these components can be calculated with a given accuracy by 

segmenting the phase signals. The determined multi-component model of the signal )(tx  has the following form:  
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where )(~ tx is the multi-component approximation of the original signal )(tx , N is the number of components, ai 
is the amplitude, ωi is the center frequency and φi is the instantaneous phase of the i-th component. 

The IHT algorithm is summarized in Figure 18 and explained in detail in Gianfelici et al. [22]. It starts by 
calculating the Hilbert transform )]([ txH  of the signal ).(tx  The signal and its Hilbert transform are used to 

construct a Gabor analytic signal ).(tz  The amplitude and phase of the Gabor signal are determined as 

)()(0 tzta =  and )],(arg[)(0 tzt =α  respectively. The amplitude )(0 ta  is separated into a trend )(0 ta  and 

a zero-mean oscillatory component )(~0 ta  by means of a suitable filtering algorithm (application dependent). The 

trend )(0 ta  is regarded as the output of the algorithm, i.e., the first AM component, while the oscillatory part 

)(~0 ta is decomposed further by repeating the aforementioned steps.  
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Figure 18. Iterated Hilbert Transform. Hilbert transform )](~[ taH i  is used to construct a Gabor analytic signal ),(1 tzi+  

and its amplitude )(1 tai+  and phase )(1 ti+α  are determined. The amplitude is separated into a trend )(1 tai+ and a 

zero-mean oscillatory component ),(~
1 tai+ which is further decomposed. The outputs of the algorithm are the  

AM-components )(tai (red boxes) and phases )(tiα (green boxes). The picture is adapted with permission from [37]. 

3.2.2. Iterated Hilbert Transform for tremor detection 
The IHT was used to construct a multi-component AM-FM representation of the rectified EMG signal. By using 
our surface EMG model, we conducted a number of preliminary simulations in which we analyzed the spectral 
characteristics of the obtained AM components. Specifically, we were looking into the spectral energy around the 
frequency of the imposed cortical oscillations (i.e., the frequency of the imposed tremor, see Figure 15). We 
discovered that the energy of the first component in this band was several magnitudes higher than the energy of 
the other extracted components, consistently in all simulated conditions, and this indicated that the first 
component could be used to extract the underlying tremor signal.  

Therefore, to get an estimate of the tremor, the first component extracted by the IHT is band-pass filtered within 
the tremor-frequency range (3-15 Hz). We also discovered that the low-passed (< 3 Hz) version of the first 
component gives the mean value of the rectified EMG.  Therefore, to get an estimate for the level of voluntary 
activity, the standard deviation is calculated for the estimated tremor signal and subtracted from the mean of the 
rectified EMG.  In this way, both the tremor component and the degree of voluntary activation can be determined 
from the first IHT component. This is thanks to the joint action of the heterodyning capturing effect of the Hilbert 
Transform and the component separation obtained by the Bedrosian Theorem.  

A manuscript describing this approach is under preparation for submission to IEEE Transactions on Neural 
Systems and Rehabilitation Engineering, and the method has been preliminary presented at the ISEK 
conference, [41]. 

3.2.3. Validation 
Methods 
The validation of the method was performed in two ways:  

1. First, the IHT was applied to simulated EMG data obtained by the developed model of surface EMG 
during tremor. Using the model has the advantage that the tremor control signal (the cortical oscillations 
imposed on the voluntary drive, see Figure 15) is known and can be used directly for comparison and 
evaluation of the output of the algorithm. Furthermore, a wide variety of conditions could be simulated in 
the model. Five different tremor-frequencies (4, 6, 8, 10, and 12 Hz), five different tremor-intensities (0 – 
no tremor, 5, 10, 15, and 20 au – severe tremor), four different degrees of voluntary activation, obtained 
by different inertial loadings (0, 5, 10, and 20% MVC) were simulated for 8 s contractions.  Furthermore, 
for each of these conditions 10 simulations were performed with the varying locations of the muscle 
fibers belonging to each MU in the muscle. This variability is known to have a significant influence on the 
surface EMG, [42]. In total, this yielded 1000 simulations equivalent to 8000 s of the simulated tremor 
EMG. The IHT was applied to the simulated signals and compared to the imposed tremor intensity and 
frequency, and the degree of voluntary activity.  

2. Second, the surface EMG and limb movement recorded using gyroscopes were acquired from four 
tremor-patients with Essential Tremor (n=2) and Parkinson’s disease (n=2). The patients were instructed 
to perform a specific motor task provoking tremor. The task was individually selected for each patient, 
depending on his/her tremor type. The IHT was applied to the surface EMG signals and compared to the 
gyroscope recordings using the cross-correlation analysis. Furthermore, one patient was asked to repeat 
the task twice with 500 g and 1000 g of inertial loading, in order to assess the ability of the model to 
predict voluntary activation in experimental conditions.  

Results 
Figure 19 depicts an example of a simulated EMG signal during moderate to high voluntary activation and with 8 
Hz tremor. The plot B depicts the first derived IHT-component (continuous line) compared to the imposed cortical 
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oscillations (dashed line). The time shift between the two signals is due to the fact that the MU action potentials 
tend to occur mainly during the increasing phase of the cortical oscillations. This  
time-shift was taken into account when systematically quantifying the similarity between the two signals. The two 
bottom plots depict the second and third IHT-component, which reflect the higher frequency content of the EMG. 
In the case of 8 Hz tremor, the mean normalized RMSE between the two signals across all simulated conditions 
was 18%, which indicates a high similarity.  

Figure 20 depicts the correlation between the estimated and imposed tremor amplitude (A, R2=0.52) and the 
correlation between the estimated degree of voluntary activation and the inertial loading (B, R2=0.64) for the 
simulated signals. This indicates that the proposed method was capable of estimating the tremor amplitude and 
the degree of voluntary activation across different conditions, including the conditions with low signal-to-noise 
ratio (i.e., low tremor amplitude and high voluntary activation).  

The influence of the length of the time-window was investigated on the simulated data. These tests indicated that 
the duration of the time-window had only a little influence on the estimation results, except for the window-lengths 
at or below 250 ms, where the peak-frequency estimation started being compromised.  

Figure 21, right column depicts the tremor-estimate and the gyroscope signal for short epochs of the 
experimentally recorded data for each of the four patients. The left column depicts the power spectral density of 
these signals. The peak cross correlation value was 0.62±0.15 and the average time-lag was 13 ms, indicating 
the electromechanical delay. 
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Figure 19. Algorithm performance on the simulated data during moderate levels of voluntary activity. Simulated EMG (A), 
imposed tremorogenic oscillations (B, dashed line), extracted tremor-component (B, continuous line) and second and third 

IHT-components (C and D) are shown. The estimate of the tremor signal is obtained by band-pass filtering the first 
component of the IHT. Note that the extracted tremor component is roughly a time-shifted version of the imposed 

tremorogenic oscillations.  
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Figure 20. (A) The mean amplitude of the estimated tremor-component across all of the simulated conditions related to the 
amplitude of the imposed cortical oscillations and (B) The mean level of estimated voluntary activity related to the simulated 

added inertial loading. The IHT-based tremor detection method successfully estimates both the tremor amplitude and the 
level of voluntary activation.  
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Figure 21. The tremor-estimate (full line) and the gyroscope recordings (dashed line) for the four patients (A, C, E, G) and 

the power spectral densities of those signals (B, D, F, H). The tremor signal estimated by the IHT resembles the actual 
tremor picked up by the gyroscopes, both in time and spectral characteristics.  

3.2.4. Discussion 
The validation of the proposed IHT-based method indicated that the method works well in characterizing tremor 
from the surface EMG across conditions, both on simulated and experimentally collected data.  

In order to detect tremor a simple threshold can be applied to the amplitude of the extracted tremor-component. 
Due to interpersonal differences (e.g., muscle architecture and thickness of tissue layer between muscle and 
electrode) and specifics of the different detection systems (e.g., electrode impedance), the optimal performance 
of the tremor detection will be obtained if the threshold-value is determined individually for each subject. 

Furthermore, the algorithm output may be applied in the other aspects of the tremor-suppression system: For 
example, the extracted tremor-component captures information about tremor-frequency and phase, which may be 
used as a supplement to the parameters extracted by using inertial sensors. Furthermore, the estimation of the 
degree of voluntary activity may be used to assess whether the voluntary movement is occurring. This is relevant 
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if the "stimulate-when-needed" strategy is used, i.e., the stimulation is applied only when the voluntary movement 
is being performed.  

3.2.5. Implementation 
As already pointed out, the IHT is very convenient for real time implementation. The algorithm comprises iterative 
application of Hilbert transformation and simple filtering. Importantly, the discrete time analytic signal can be 
calculated efficiently by utilizing the algorithms for the Fast Fourier transformation, [43].  

To test the online performances preliminary, we implemented the IHT method in C# (Visual Studio 2005, 
Microsoft, US). The hardware setup comprised: 1) a single channel isolated EMG amplifier (EX002, Center for 
Sensory Motor Interaction, DK), 2) an accelerometer (ADXL203, Analog Instruments, US), and 3) a standard PC 
equipped with a DAQ card (PCI-6221, National Instruments, US). The outputs from the accelerometer and EMG 
amplifier were connected to the analog input channels of the DAQ card. To simulate tremor, a healthy subject 
was asked to generate oscillatory movement (flexion/extension) at the wrist joint. The accelerometer was placed 
on the subject's hand (dorsal side) to capture the oscillations, and the bipolar EMG was recorded from the wrist 
extensor muscles.  

The signals were sampled at 1 KHz and acquired continuously. The acquired EMG was processed by applying 
the IHT-based tremor detection algorithm to non-overlapping time windows. Two durations of the time window 
were tested: 500 ms and 1s. The accelerometer signal, EMG and the extracted tremor signal (i.e., filtered first 
component of the IHT) were plotted (see Figure 22).  

The software also calculated the average processing time (APT) for the IHT. The APT was 160 ms for the time 
window of 1 s. If the window of 500 ms was used, the processing time dropped to only 50 ms. The conclusion of 
this preliminary test is that the real time performances of the algorithm are more then adequate for the intended 
application. We are currently working on the implementation of the algorithm in C++ and its integration into the 
QNX TREMOR platform. This should improve the online performances even further.  

 
Figure 22. Online implementation of the Iterated Hilbert Transform (IHT) based algorithm for tremor detection. The method 
was implemented in C# in order to assess its online performances. The application acquires a signal from an accelerometer 
placed on the dorsal side of the subject's hand and EMG from the wrist extensor muscles and then processes the EMG by 

applying the IHT. The extracted tremor signal is shown in the bottom plot. The horizontal axis represents the time in 
milliseconds, while the vertical axes are in volts (top and middle plots) and in au (arbitrary units) for the bottom plot. The 

average processing time for the time window of 1 s of EMG was about 160 ms. 

4. Development of inertial sensor subsystem 
In the context of this task, CSIC and TCN led the definition of the Inertial Sensor Subsystem to be used in 
TREMOR. The inertial system is a new generation of IMUs based on off-the-shelf Technaid IMUs, developed by 
taking into account the results of the preliminary recording session held at Hôpital Erasme. IMUs are used within 
TREMOR to: 

1) Work out limb posture (as a source of information for WP5), 
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2) Extract tremor parameters at joint level. In particular, for the first objective of the IMU system is the 
definition of a body to sensor calibration protocol in order to translate the recorded motion with IMU into 
joint rotations. This procedure permits fast sensor placement and robustness when there is uncertainty 
in sensor placement, as it might appear when the user is wearing the final garment. The analysis of the 
upper body motion based on inertial sensors will be described in section 4.1. 

TCN customized its IMU product for TREMOR project. The sensor eventually developed is able to provide 
information about joint acceleration, velocity and position, Figure 23. Moreover, a biomechanical model for the 
extraction of this information based on IMUs sensors was developed. TCN also developed a QNX Neutrino driver 
for the integration of IMU sensors in the TREMOR platform. 

 
Figure 23. Technaid’s inertial sensor customized for TREMOR project. 

Technaid started the development of flexible IMU sensors in the framework of TREMOR, Figure 24. The major 
benefits of these sensors are: (1) they can be easily integrated into TREMOR garment (can adapt to human 
shape), (2) they have reduced weight and size (lower thickness), and (3) they increase patient comfort when 
wearing the garment, in addition to improving their esthetical acceptance. Currently, Technaid has developed 
flexible circuits composed only by gyroscopes. The developed sensors were sent to ULB in order to assess 
tremor in rats. Based on the result of these experiments, Technaid will start to develop complete inertial sensors 
in flexible form. 

  

 

Figure 24. Flexible IMU sensors developed by Technaid to be integrated into TREMOR garment. 

4.1. Analysis of the upper body motion using inertial sensors 
The kinematic model of the arm can be built based on a kinematic chain based on the orientation and lengths of 
the body segments. In Figure 25, the upper arm is represented. pU0 is the position of the shoulder and pu1 is the 
position of the elbow. The position of the elbow can be calculated from the position of the shoulder using the 
following equation (assuming a rigid segment): 
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Where: 
GpU1 = position of the elbow respect to the global frame. 
GpU0  = position of the shoulder respect to the global frame. 
GBqU  = orientation of the upper arm represented by quaternions. 
BsU  = length of the upper arm. 
GBqU*  = conjugate of the quaternion GBqU. 

 
Figure 25. Body segment frame respect to the global frame. 

The position of the wrist can be calculated from the position of the elbow using the following equation: 
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Therefore, a joint is calculated from the previous joint. In TREMOR’s case, for the kinematic model of the upper 
body the first join could be the pelvis. According to these considerations the kinematic model consists of the 
following equations: 
Gppelvis = Origin        Pelvis 
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Figure 26. Reference frames for the joints. 

As result, the analysis of the upper body motion is reduced to know the orientation of each body segment respect 
to the global frame, so that, the quaternion of each body segment. These orientations are obtained from the 
inertial sensors placed on the different segments of the body, figure 26. 

4.1.1. Measurement of the body segment orientation using inertial sensors 
The inertial sensors provided by Technaid integrate a three-dimensional accelerometer, a three-dimensional 
gyroscope and a three-dimensional magnetometer. The information of these three sensors is combined in order 
to estimate the orientation of the segment where the sensor is attached. The orientation of a vector can be also 
calculated using the angular velocity of its motion by the equation: 

tt
GS

t

oGS

xqq Ω=
2
1

 
That means that the orientation of the body limb could be calculated by the gyroscope signals. Therefore,  the 
orientation of the body limb can be estimated combining the accelerometer, gyroscope and magnetometer and 
only from the gyroscope signals. This redundant information can be used to improve the robustness of the 
system.  

Each sensor offers the orientation of the body limb where it is attached. Based on these orientations and the 
kinematic model, the upper body motion can be rebuilt. However, the orientation given by the sensor is referred to 
the global frame and the orientation of the sensor respect to the body segment is unknown. Therefore, it is 
necessary a calibration process in order to know the position of the sensor respect to the body segment. 

The body orientation respect to the global frame (GBq) can be calculated following equation: 

 
Where, 

GSq is given by the sensor, 
BSq is estimated after calibration process, 
GBq is the quaternion representation of the body segment orientation respect to the global frame, 
BSq is the quaternion representation of the sensor orientation respect to the body frame, 
GSq is the quaternion representation of the sensor orientation respect to the global frame (measurement of the 
sensor). 

Therefore, the calibration process is carried out in order to know the orientation and position between the sensor 
and the body limb. The process defined by Technaid consists of three steps or poses. 

N-pose 

- Stand upright on a horizontal surface 
- Feet parallel, one foot width apart 
- Knees above feet 
- Hips above knees 
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- Back straight 
- Shoulders above hips, do not pull shoulders up. 
- Arm straight alongside body (vertically), thumbs forwards. Check the correct attitude of the arms by 

flexing and extending the elbows. The forearms should move only in the vertical (sagittal) plane with the 
palms of the hands facing each other. 

- Face forward. 
- Do not move during the calibration procedure. 

T-pose 

- Stand upright on a horizontal surface 
- Feet parallel, one foot width apart 
- Knees above feet 
- Hips above knees 
- Back straight 
- Shoulders above hips, do not pull shoulders up. 
- Arms extended horizontally, thumbs forwards. Check the correct attitude of the arms by flexing and 

extending the elbows. The forearms should move in horizontal (transverse) plane. 
- Face forward. 
- Pay attention to symmetry, for example, keep the arms at an equal height. 
- Do not overextended the elbow, since flexion/extension may be projected in other axes. 
- The wrists, elbows and shoulders should all be on a single line. 

Hand touch 

- Place the palms of the hands together 
- Move the arms around slowly while keeping the hands together and shoulders steady. 
- Make small circles in all directions. 

With the N-pose the misalignment between the global vertical axis and the sensor axis parallel to the limb (Y axis) 
is calculated. The global vertical direction is the gravity. With the T-pose, the misalignment between the global 
vertical axis and the sensor axis perpendicular to the body limb (X axis) is calculated. With the Hand touch step 
both arms are as a close chain, which allows calculating the lengths of the limbs. 

With the following expression, the orientation between the sensor and the body limb can be calculated GBq is the 
orientation of the global vertical axis or gravity vector and GSq is the measurement): 

 

5.  Development of algorithms for tracking and extraction of tremor characteristics 
This section summarizes work on task WP4.4 Development of algorithms for tracking and extraction of tremor 
characteristics, which aims at obtaining an instantaneous parameterization of tremor in each targeted joint. 

This task is coordinated by CSIC, and interacted with TCN for the development and validation of the tremor 
tracking algorithms. Notice that the work described hereafter has been included in a number of peer-reviewed 
publications, among them, [44, 45]. 

The work was organized as follows: 

- Propose a preliminary algorithm for extraction of tremor characteristics based on data collected form 
tremor patients. 

- Validation and refinement of this algorithm In subsequent recording sessions. 

- Update the different parameters of the algorithm for the customized IMUs. 
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Data presented here was obtained from five patients recorded during the first session at Hôpital Erasme, 
Brussels. Similar results for all upper limb joints have been obtained in subsequent experiments. The group of 
patients comprised essential tremor patients (n=2), a paraneoplastic syndrome patient, an idiopathic parkinsonian 
patient, and a patient suffering from extrapyramidal syndrome. This group comprised 4 men and 1 woman, with 
ages ranging from 48 to 73 years old (mean=64). All the patients gave written informed consent, and the protocol 
had been previously approved by the Ethical Committee at Hôptial Erasme. Patients kept taking their medication 
during the experiments, so that their tremor were stabilized. The description of the patients were given in section 
2. 

Protocol 
We present wrist flexion/extension data because: 1) tremors are more explicit at distal joints, [56], 2) wrist tremor 
has the largest impact on disability, [65], and 3) it constitutes, together with finger tremor, the most studied tremor 
in clinical literature. 

The protocol comprised four tasks, three of them included because there are commonplace in clinical practice, 
the last one for usability analysis. These tasks are: 1) resting both arms on the lap, 2) keeping both arms 
outstretched, 3) pointing with the finger tip to the nose, the so called finger to nose test, and 4) pouring water from 
a standard bottle into a regular glass. 

Each patient performed three repetitions of each task, each lasting 30 s. The finger to nose test was executed 
with both hands. 

Instrumentation 

Joint rotation is obtained with two solid state gyroscopes included within the IMU, placed distally and proximally 
with respect to the human joint. Figure 27 shows how wrist flexion/extension is obtained: we remove the 
measurement of the distal gyroscope, placed over the dorsal side of the hand, from the measurement of the 
proximal gyroscope, placed over the dorsal side of the forearm. Fixation on soft tissues is avoided in order to 
eliminate the undesired oscillations they create, and their intrinsic low pass filtering behaviour, [52]. 

 
Figure 27. Placement of MEMS gyroscopes (red boxes) for recording wrist flexion/extension. Differential 

measurement directly provides wrist rotation. 

Gyroscope bias is compensated online, based on its correlation with temperature, which is measured by the IMU 
itself. Correlation between gyroscope bias and temperature in three axes of one of the inertial measurement units 
(IMUs) we employ is shown in Figure 28. Regression coefficients for the three gyroscopes in one of the chipsets 
are given in Equations (1) to (3), where baxis represents the bias for each axis, and T the temperature in °C. 

 (1) 

 (2) 

 (3) 
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Figure 28. Relationship between gyroscope offset and temperature. Top plot shows temperature variation 

measured by the IMU. Bottom plot shows correlation between offset and temperature for X (blue), Y (green) and Z 
(red) axis gyroscopes. High correlation is observed. 

5.1. Real-time estimation of instantaneous tremor parameters 
Most of currently existing tremor estimation algorithms have been developed for cancelling physiological tremor in 
human-machine interfaces. Physiological tremor has another aetiology than pathological tremors, and possesses 
also different characteristics: it is barely visible to the unaided eye, and has frequency between 8 and 12 Hz, [46]. 
Physiological tremor is only symptomatic during high precision tasks, thus it is typically employed during hand 
held surgery. According to this, successful algorithms for cancelling physiological tremors such as the classical 
Weighted frequency Fourier Linear Combiner (WFLC), [47], Bandlimited Multiple Fourier Linear Combiner 
(BMFLC), [48], or Double adaptive BMFLC, [49], may not constitute the optimal solution for estimation of 
pathological tremor parameters. In fact, in [50], Rocon and colleagues employ a preliminary filtering stage that 
eliminated volitional motion from the input signal before feeding it into a WFLC, which was employed to track 
pathological tremor. A similar approach has been recently described in [51]: an extended Kalman filter separates 
tremor and the concomitant voluntary component of movement, and estimates tremor features. 

This section presents our two-stage algorithm for real-time modelling of tremor. It relies on two assumptions: 1) 
pathological tremors and voluntary motions have different frequency distributions, and 2) pathological tremor 
constitutes, from a signal processing standpoint, additive noise superimposed to volitional movement, [53].  

The data we collected yields that pathological tremors occur in a frequency band higher than voluntary motion, 
Figure 29, which is in agreement with the literature. For example, one large study carried out with young and 
elderly healthy people and patients suffering from tremor, demonstrates that both groups are able to perform 
tracking tasks with a frequency up to 2 Hz, the bandwidth decreasing with age, [54]. Also in [55], the authors 
perform a large spectral analysis of twenty four activities of daily living, showing that most of them involve wrist 
notion in a frequency range around 1 Hz, being the predominant frequency components between 0.48 and 2.47 
Hz. 
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Figure 29. Power spectral density of wrist rotation during a finger to nose task performed by an essential tremor 
patient. Voluntary movement (below 2 Hz) has considerably more energy than tremorous movement (centered 

around 5.5 Hz). Dashed red line separates energy attributed to voluntary (left) and tremorous motion (right). 

In addition, pathological tremors are reported to occur at higher frequencies, typically in the 3–12 Hz band, 
[56,57]. Moreover, there exists a relationship between the underlying pathology and tremor frequency. For 
example, Parkinsonian tremor frequency lies within 4–7 Hz, cerebellar tremors manifest between 4 and 6 Hz, and 
essential tremors broaden to basically the whole 3–12 Hz band, [56].  

According to this, it is possible to extract voluntary and/or tremorous motion from kinematic data time series 
based solely on their different frequency contents, for example with a forth and back recursive digital filter that 
removes one of them from the original signal without causing phase distortion, i.e., delay, Figure 30. Although this 
approach is not real-time implementable, it sets the basis for our two-stage algorithm for estimation of tremor 
parameters described in next section.  

 
Figure 30: Separation of voluntary and tremorous components of movement by means of recursive digital filters. 

Top left figure shows the original signal (black) and voluntary movement (red) obtained with a zero phase low pass 
filter, fc = 2 Hz. Bottom left plot shows tremorous movement obtained by subtracting voluntary movement from the 
original signal. Right plots show power spectral densities of voluntary (top) and tremorous components (bottom). 

However, at the moment of developing a real-time algorithm, we must take into account that power of tremorous 
component of motion is considerably smaller than that of volitional origin. This makes estimation algorithms 
based on gradient like approaches tend to converge towards the voluntary component, making them unsuitable 
for direct tremor modelling, [54]. Therefore, we need to first isolate the tremorous component of motion. This 
constitutes the idea of our two stage algorithm: to first generate an estimation of tremorous motion (after stage 1), 
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and next feed this signal into an adaptive algorithm that provides instantaneous tremor frequency and amplitude 
(stage 2), Figure 31. To generate an estimation of tremor, we employ a tracking algorithm to estimate the 
voluntary component of motion. Next, based on the fact that tremor alters volitional motion in an additive manner, 
[43], we remove the estimated voluntary movement from the input signal, obtaining an estimation of tremor. 

 

 
Figure 31: Block diagram of the two stage algorithm for real-time estimation of tremor parameters. First, we 

generate an estimation of the voluntary component of motion, which subtracted from the total movement yields an 
estimate of tremor. Afterwards, in stage two, and adaptive algorithm tracks instantaneous tremor parameters. 

This section reviews a series of algorithms that are employed to develop the two-stage algorithm. First, we 
present a number of techniques to track voluntary movement based on its lower frequency content. Next, we 
introduce two adaptive algorithms that track an input signal based on Fourier modelling and the Least Mean 
Square (LMS) recursion, a gradient-like approach [58], and a Kalman Filter that estimates pathological tremor 
amplitude. 

5.1.1. Stage 1. Voluntary motion tracking 
Two types of tracking algorithms for real-time estimation of voluntary movement will be evaluated. As discussed 
above, voluntary movements are assumed to be performed between 0 and 2 Hz. Therefore, the tracking 
algorithm must be designed to neglect any component of the movement over 2 Hz.  

Voluntary movement is modelled as a first order process. If we consider a Taylor series that represents voluntary 
movement, we can neglect the second derivative if either the sampling period Ts or the acceleration itself are 
small, Equation (4). In our case both assumptions are satisfied: the sampling period is 1 ms, and the maximum 
acceleration is 2.54·10-4, 4 orders of magnitude smaller than average angular velocity. 

 (4) 

g-h filters 
g–h filters are simple recursive filters that estimate future position and velocity of a variable based on first order 
model of the process. Measurements are used to correct these predictions, minimizing the estimation error. 
Traditional applications of g–h filters are radar tracking and aeronautics, [59]. The general form of a g–h filter is: 

 (5) 

 (6) 

 (7) 

 (8) 

Equations (5) and (6) are designated as update, tracking, or filtering equations. They estimate the current position 
and velocity of the variable, , , based on previous predicted position and velocity, , , taking 

current measurement  into account. Confidence on measures is weighted by gains  and . Equations (7) 
and (8) are called prediction equations, because they provide a prediction of the position and velocity based on 
the first order dynamic model of the variable. Note that as g–h trackers consider a constant velocity model, 
predicted velocity is equal to the current one.  

g–h filters are affected by two error sources, [59]: 1) the lag, dynamic, bias or systematic error, which is related to 
the constant velocity assumption, and 2) the measurement error, which is inherent to the sensor and 
measurement process. Typically, the smaller  and  are, the larger is the dynamic error and the smaller are 
the measurement errors, [59]. Therefore, in designing a g–h tracking filter there is a degree of freedom in choice 
of the relative magnitude of the measurement and dynamic errors. To simplify the selection of gains, we consider 
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two filters that are optimal in some sense. These filters are the Benedict–Bordner Filter and the Critically 
Dampened filter, described next. 

• Benedict-Bordner Filter (BBF): The BBF minimizes the total transient error, defined as the weighted sum 
of the total transient error and the variance of prediction error due to measurement noise errors, [60]. 
The BBF is the constant g–h filter that satisfies: 

 (9) 

As Equation (9) relates g and h, the BBF has one degree of freedom. Because for g–h filters increasing the value 
of g diminishes the transient error, the larger g is, the higher frequencies the BBF tracks.  

• Critically Dampened Filter (CDF): The CDF minimizes the least squares fitting line of previous 
measurements, [59], giving old data lesser significance when forming the total error sum. This is 
achieved with weight factor θ. Parameters in the g–h filter are related by: 

 
(10) 

 

Selection of filter gain for the CDF is analogous to that for the BBF.  

Kalman Filter 
The Kalman filter (KF) is the most widespread estimation algorithm, and is employed in a large number of 
applications. We implement a KF that tracks voluntary movement modelled as a first order process, Equation (4). 
Therefore, state vector x(t) is composed by the variable to be estimated, and its derivative. The problem is 
formulated as: 

 (11) 

 (12) 

Covariance matrices are defined taking into account the following considerations:  

1. Measurement noise covariance R(k): as voluntary motion is the variable we are tracking, tremor is 
assumed to be sensor noise. The value of the measurement noise covariance is considered to be the 
average covariance of isolated tremor data; therefore  = 0.0643 rad2·s-2. 

2. Process noise covariance Q(k): we hypothesize that process noise is related to voluntary motion 
changes due to tremor. A piecewise constant acceleration model is considered, [JAG18]. This model 
assumes that voluntary movement undergoes constant and uncorrelated acceleration changes be tween 
samples in the form of: 

 (13) 

To select the variance of the random velocity component, , we follow the recommendation in [61]: 
. The second derivative of the raw recorded motion yields that: = 0.1042 rad2·s-2. 

5.1.2. Stage 2. Tremor modelling 
State of the art tremor modelling algorithms rely on a time-varying Fourier series, which parameters are estimated 
recursively. Adaptation to the input signal is based on the LMS algorithm developed by Widrow, [58]. As the LMS 
technique is a descend method that relies on a special estimate of the gradient, [58], high energy voluntary 
motion must be removed first, to ensure proper tremor tracking. The first part of the two-stage algorithm 
accomplishes this task, Figure 31.  

We evaluate the performance of two algorithms originally developed to track physiological tremor, and of a 
Kalman Filter we have developed to estimate tremor amplitude, the parameter that is more prone to change 
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during the execution of a task, while tremor frequency keeps within a 1.5 Hz interval around tremor frequency, 
[62]. 

Weighted Frequency Fourier Linear Combiner 
The Weighted Frequency Fourier Linear Combiner (WFLC) is the most widespread algorithm for tremor 
modelling. It consists in an extension of the classical noise canceller presented in [58], the Fourier Linear 
Combiner, [63], which also tracks frequency of the input signal based on a LMS recursion. Therefore, the WFLC 
adapts in real-time its amplitude, frequency and phase, [54]:  

 (14) 

 (15) 

 (16) 

 (17) 

Equation (14) represents the time varying sinusoidal terms of the Fourier Series. Equation (15) defines the error 
to be minimized by the LMS recursion. Equations (16) and (17) represent frequency and amplitude adaptation. 
The WFLC has four parameters: the number of harmonics of the model, M, the amplitude and frequency 
adaptation gains, µ0, and µ1, and a bias weight µb that is included to compensate for low frequency errors, 
[54,64]. The number of harmonics is typically set to 1; the other parameters are selected based on experimental 
data. 

Bandlimited Multiple Fourier Linear Combiner 
The Bandlimited Multiple Fourier Linear Combiner (BMFLC) is a more recent algorithm derived from the FLC. It 
emerged to compensate for the limitations of the WFLC to track physiological tremor when two constituent 
frequencies are clearly evident, [46], or when frequency variations occur abruptly, [48]. The BMFLC consists in a 
bank of FLCs that track the input signal based on multiple frequency components. Therefore, each FLC adapts its 
amplitude to the input signal, although its frequency remains constant.  

The performance of the BMFLC relies on the multiple fixed frequencies it can track. An interval is thus defined 
with the lower and upper frequency of the FLCs bank, ω0 , and ωf . The number of FLCs in between is defined by 
parameter G. The BMFLC is formulated as follows, [48]: 

 (18) 

 (19) 

 (20) 

Equation (18) represents the sinusoidal terms of the Fourier Series. Equation (19) defines the error to be 
minimized by the LMS recursion. Equation (20) represents amplitude adaptation. The BMFLC has six 
parameters: the number of harmonics of each FLC model, M, amplitude adaptation gain, µ, the lower and upper 
frequency of the FLC bank, ω0, and ωf , and the number of filters in between, G. A bias weight µb is also 
included to compensate for low frequency errors [16].  

Although the BMFLC is not conceived as a frequency tracking algorithm, we developed an equation to estimate 
the current frequency of the input signal, Equation (21). Frequency estimation is obtained by weighting the 
contribution of each FLC to amplitude adaptation. For a first order Fourier series, it is expressed as: 

 (21) 
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Kalman Filter 
The WFLC and BMFLC algorithms provide adaptation to the input signal based on special estimates of the 
gradient. On the contrary, Kalman Filter (KF) constitutes the optimal solution for estimation problems, in the 
sense it minimizes the covariance of a posteriori estimation error. Therefore the performance of WFLC and 
BMFLC, overall in terms of amplitude estimation, as it is the parameter that varies the most, can be enhanced 
using an adequate KF. In a similar manner to WFLC, we define our KF as: 

 (22) 

 (23) 

where A and B represent the amplitude of the sinusoidal terms of a first order Fourier series, and ω0 the current 
tremor frequency. As tremor frequency suffers slow changes, and varies in a ±1.5 Hz interval around a 
characteristic frequency that depends on the patient, [62], WFLC frequency estimation is employed. Therefore, 
we define a cascade filter that consists of a WFLC that tracks tremor frequency, and feds it into the Kalman Filter 
that estimates tremor amplitude.  

Covariance matrices are adjusted as follows:  

1. Measurement noise covariance , which has only slight impact on transient duration. 
2. Process noise covariance is defined as , because state 

variables are considered to be mutually independent. 

5.2. Results 
This section presents evaluation of the algorithms described in previous section for both voluntary motion 
tracking, and estimation of tremor parameters. The idea is to find a unique filter setup that provides accurate 
tracking of instantaneous tremor parameters for every patient and task. To do so, first, we present the figure of 
merit that will be employed to tune each algorithm, and compare the performance of different candidates. Next, 
we summarize the results obtained with each of them. 

The results presented below are obtained after analyzing wrist tremor of five patients recorded during the first 
session at Hôpital Erasme, Brussels. The protocol for the measurement was described in section 2.1. Similar 
results for all upper limb joints have been obtained in subsequent experiments.  We present wrist 
flexion/extension data because: 1) tremors are more explicit at distal joints, [56], 2) wrist tremor has the largest 
impact on disability, [65], and 3) it constitutes, together with finger tremor, the most studied tremor in clinical 
literature. 

5.2.1. Evaluation of voluntary movement tracking algorithms 
The Kinematic Tracking Error (KTE) evaluates the smoothness, response time, and execution time of a tracking 
algorithm, [64]. It is expressed mathematically as: 

 (24) 

where φ|b∗| and σ|b∗| are the mean and variance of the absolute estimation error, b∗ = |yk − xk+1,k|, respectively. 
The former measures how fast the algorithm is capable of reacting when the velocity changes, whereas the latter 
quantifies the smoothness or filtering of the estimated variable, [64]. Offline voluntary motion estimation obtained 
with a forth and back recursive filter is employed as the reference signal the estimators should track. This 
technique consists in filtering input data in both the forward and reverse directions; after filtering in the forward 
direction, the algorithm reverses the filtered sequence and runs it back through the filter, which yields precisely 
zero-phase distortion.  

First, we present results obtained with the optimal parameter(s) for each of the voluntary movement estimation 
algorithms presented in Section 5.1.1. The condition to select the optimal parameter(s) for each algorithm is to 
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find the tuning that minimizes the KTE between filter estimation of voluntary motion and zero phase (off-line) 
recursive estimation of voluntary movement. Optimal filters are:  

• Benedict–Bordner Filter with g = 0.018.  
• Critically Dampened Filter with θ = 0.990.  
• Kalman Filter with  = 0.0643 and  = 0.1042. 

The KTE is employed next to compare their relative performance. Table VI summarizes KTE per kind of task and 
patient, for the optimal setup for the three algorithms. We observe that among the BBF, CDF, and KF, the CDF 
with θ = 0.990 performs the best when tracking voluntary movement, as it provides the least KTE for all tasks; 
thus it is the approach we select for the first stage of the algorithm. 

Algorithm Arms outstretched Finger to nose Rest Water into glass 

Benedict-Bordner Filter 0.194 ± 0.058 0.400 ± 0.134 0.147 ± 0.091 0.291 ± 0.083  

Critically Dampened Filter 0.121 ± 0.053 0.372 ± 0.118 0.134 ± 0.081 0.264 ± 0.073 

Kalman Filter 0.169 ± 0.100 0.378 ± 0.143 0.174 ± 0.129 0.312 ± 0.124 

Table VI. Kinematic Tracking Error (rad/s) for voluntary movement tracking algorithms organized by task. Table provides 
mean ± standard deviation. 

Figure 32 shows an example of CDF and BBF estimation of voluntary movement from raw gyroscope recording, 
during an arms outstretched task performed by patient 01. We observe that BBF estimation is less smooth than 
that of the CDF for a similar adaptation to transitory changes. 

 
Figure 32. Comparison between CDF and BBF estimation of voluntary movement from raw gyroscope data during 

an arms outstretched test performed by patient 01. 

5.2.2. Evaluation of tremor modelling algorithms 

An optimal figure of merit to evaluate tremor estimation algorithms must consider the physical nature of the 
estimation error; for example if it originates from phase difference between real and estimated tremor, or 
estimation overshoots and undershoots. Traditional use of root mean square error (RMSE) suffers from these 
problems: 1) because errors due to undershoots and overshoots posses large power, which make them 
overshadow errors from interest, and 2) because the presence of delays affects the RMSE severely, although it 
does not necessarily indicate poor performance, [66]. In this regard, the so-called filtered mean square error with 
delay correction, FMSEd, takes both phenomena into account, [66], as it first aligns estimated tremor with the 
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reference signal, and afterwards computes the delay corrected estimation error. The FMSEd is defined as 
follows:  

 (25) 

where  represents and  stands for the delay compensated tremor estimation. Instantaneous delay is 

calculated offline by means of an adaptive algorithm that minimizes the mean square error function based on a 
LMS-like recursion, [67]. As mentioned before, once instantaneous delay is obtained, RMSE between delay 
corrected estimation of tremor and the reference signal obtained is computed, providing the FMSEd. 

First we select filter parameters so that they minimize FMSEd, and afterwards we compare the performance of 
each filter presented in Section 5.1.2. Optimal filters are:  

• Weighted Frequency Fourier Linear Combiner with µ0 = 5·10−4, µ1 = 2·10−2, µb = 1·10−2, M = 1, f0 = 6 
Hz.  

• Bandlimited Multiple Fourier Linear Combiner with µ = 4·10−2, µb = 0, M = 1, f0 = 3 Hz, fn = 8 Hz, G = 4.  
• Kalman Filter with µ0 = 5·10−4, µ1 = 1·10−2, µb = 1·10−2, M = 1, f0 = 6 Hz, R = 0.01, Q = (1, 1, 1, 1). 

Table VII summarizes FMSEd per task and patient for the optimal setup for the three algorithms. FMSEd is 
computed as the error between applying the different tremor modelling algorithms to the estimated tremor, 
obtained as the difference between raw gyroscope signal and CDF estimation, and the zero phase offline 
estimation of tremor. We observe that among the WFLC, BMFLC, and KF, the KF (with a previous WFLC stage) 
performs the best when estimating instantaneous tremor amplitude, as it provides the least FMSEd for all tasks, 
and also is capable of tracking tremor frequency in a robust fashion, as shown below. Therefore, we choose to 
employ a WFLC in cascade with a KF to estimate tremor parameters in real-time.  

Algorithm Arms outstretched Finger to nose Rest Water into glass 

Weighted Frequency FLC 0.017 ± 0.007 0.052 ± 0.023 0.014 ± 0.006 0.042 ± 0.020  

Bandlimited Multiple FLC 0.007 ± 0.008 0.008 ± 0.019 0.005 ± 0.012 0.006 ± 0.013 

Kalman Filter 0.001 ± 0.003 0.000 ± 0.002 0.001 ± 0.001 0.001 ± 0.003 

Table VII. Filtered Mean Square Error with Delay correction (rad/s) for tremor estimation algorithms organized by task. Table 
provides mean ± standard deviation. 

Figure 33 shows tremor amplitude and frequency estimation obtained with the WFLC alone, and together with the 
KF, during an arms outstretched task performed by patient 01. We observe that the WFLC is capable of adapting 
to tremor frequency and reacting when changes occur (bottom plot), and that KF adapts faster than WFLC when 
tremor amplitude varies. This happens because of the optimal nature of the KF, which makes it adjust its gain 
continuously, on the contrary to the WFLC that has a fixed gain to descent the gradient. 
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Figure 33. Top plot: Comparison between tremor amplitude tracking with the WFLC (blue line), and a cascade 

algorithm compound by a KF preceded by a WFLC (red line). Bottom plot: frequency tracking with the WFLC (solid 
line), plotted against tremor spectrogram. Data corresponds to an arms outstretched test performed by patient 01.  

5.3. Discussion 
Previous sections presented a two-stage algorithm for real-time estimation of tremor parameters. The first stage 
is in charge of separating voluntary and tremorous components of movement, based on the fact that tremor alters 
volitional motion in an additive manner, [53]. Next, we generate an estimation of tremor as the difference between 
raw motion and this estimated voluntary movement. The second stage estimates instantaneous tremor amplitude 
and frequency from isolated tremorous movement. We proposed and evaluated three algorithms for voluntary 
movement estimation, and three algorithms for tremor modelling.  

Regarding voluntary movement estimation, we evaluated two g–h filters, the Benedict–Bordner (BBF) and 
Critically Dampened Filters (CDF), and a Kalman Filter (KF), for tracking volitional motion based on a figure of 
merit that accounts for tracking error and estimation smoothness, the Kinematic Tracking Error (KTE). This 
analysis yielded that g–h filters outperform the KF, because it results difficult to make it adapt quickly to changing 
voluntary movement patterns without tracking tremor, which translates into a larger KTE, Table VI. Comparing 
the performance of CDF and BBF, we observe that CDF outperforms BBF because its intrinsic oscillatory nature, 
that makes it resonate almost in phase with tremor. This occurs because the CDF has two equally spaced 
zeroes; thus it behaves as a critically dampened system, [59]. This also makes the CDF react faster when 
changes in volitional movement appear, decreasing estimation error during transitory periods. Therefore, the CDF 
constitutes the optimal filter during both steady and more dynamically complex tasks, as demonstrated by the fact 
that it provides the least KTE during both rest and finger to nose tests, Table VI. 

Algorithms for estimation of instantaneous tremor frequency and amplitude are evaluated based on the Filtered 
Mean Square Error with Delay correction (FMSEd). This metric presents the advantages of accounting for errors 
due to undershoots and overshoots, and those originated from estimation delays, [66]. First, we evaluated two 
algorithms originally devoted to physiological tremor tracking, the Weighted Frequency Fourier Linear Combiner 
(WFLC), and the Bandlimited Multiple Fourier Linear Combiner (BMFLC). Physiological tremor not only has 
different aetiology than pathological tremors, but also manifests differently interms of amplitude and frequency, 
[46,48]. Although the WFLC has also been successfully employed in the context of pathological tremor 
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estimation, [50], we evaluated a novel approach based on a cascade algorithm compound by a WFLC and a 
Kalman Filter (KF). This algorithm raised as the best solution in the sense it minimizes the FMSEd, as it puts 
together accurate tremor frequency estimation based on a WFLC, and an independent KF for amplitude 
estimation, Table VII. In fact, its FMSEd is at least five times smaller than that obtained with the BMFLC, which 
constitutes the second best candidate. KF tremor estimation proves to be robust and precise both during steady 
state regime and transitory periods, while the BMFLC and overall the WFLC lack of that accurate adaptation 
during transients, mainly because of the fixed gain they employ. This is demonstrated because performance in 
terms of FMSEd degrades the most during finger to nose and water glass tests, Table VII. 

Therefore, the optimal architecture for the two-stage algorithm comprises a Critically Dampened Filter that 
estimates voluntary movement, and a cascade algorithm compound by a Weighted Frequency Fourier Linear 
Combiner that estimates tremor frequency and feds it into a Kalman Filter that tracks tremor amplitude, Figure 34. 
This approach provides an average tremor estimation error 0.001 ± 0.002 rad/s, with robust frequency tracking if 
compared to spectrograms. 

Conclusions 
This section presented a two stage algorithm for real-time estimation of instantaneous tremor parameters. At the 
first stage, the algorithm separates tremorous and concomitant voluntary movement based on their different 
distributions in the frequency domain. Next, estimated voluntary movement is removed from raw kinematic data, 
in order to generate an estimation of tremor. This estimation is then fed, at a second stage, into a Weighted 
Frequency Fourier Linear Combiner (WFLC) that tracks tremor frequency, and into a Kalman Filter that uses 
WFLC frequency information to estimate tremor amplitude. The resulting algorithm provides accurate estimation 
of tremor amplitude, with an average FMSEd of 0.001 ± 0.002 rad/s, and robust frequency estimation when 
compared with spectrograms. 
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Figure 34: Block diagram summarizing the twostage algorithm for real-time estimation of instantaneous tremor 
parameters. First, a Critically Dampened Filter estimates voluntary motion from raw kinematic data. Next, we 

generate an estimation of tremor by subtracting voluntary from raw movement. At the second stage, the Weighted 
Frequency Fourier Linear Combiner estimates instantaneous tremor frequency, and then feds it into a Kalman Filter 

that tracks instantaneous tremor amplitude. 
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6.  Algorithms for modality fusion 
This section summarizes work on task WP4.5 Algorithms for modality fusion, which aims at integrating and/or 
fusing the information extracted from the different sensor modalities implemented in the TREMOR BNCI, to obtain 
a precise characterization of both voluntary and tremulous movements. 

This task is coordinated by CSIC, and interacted with AAU, and URT for the integration of the different algorithms, 
and the identification of sensor fusion approaches. Notice that the work on this task will remain active, since the 
Consortium aims at taking advantage of the outcome of the different tasks in the TREMOR-EEU extension 
project, and the experimental sessions scheduled in the framework of these tasks, to improve the multimodal BCI 
part of the TREMOR system. 

The work is organized as follows: 

- Design and implement a hierarchical sensor integration scheme, to take advantage of the outcome of 
the different sensor modalities. 

- Identify the sensor modalities which fusion may improve the performance and dependability of the 
multimodal BCI. 

- Implement and validate off line, the sensor fusion scheme. 

- Validate off line, with data from tremor patients, the sensor integration scheme. 

- Implement the sensor integration scheme in the TREMOR platform. 

- Include the sensor fusion algorithms in the integration scheme already implemented in the TREMOR 
platform. 

- Validate in a experimental session with patients, the sensor integration scheme. 

Notice that the four last tasks mentioned above remain still open, and will be finalised in the next recording 
sessions with tremor patients, which were reschedule in order to allow the definition of a new protocol that also 
address the work defined in TREMOR-EEU. 

6.1  Hierarchical sensor integration scheme 

The multimodal BCI information is merged following a hierarchical integration scheme, in which each sensor 
modality (that is aimed at extracting a certain piece of information, as described in previous sections) triggers the 
next one (in a descending sense), Figure 35.  

First, a real–time EEG classifier is in charge of detecting user’s intention to perform a voluntary movement, 
triggering the system. Next, processing of sEMG information yields tremor onset and an estimation of its 
frequency and phase. Finally, IMUs track instantaneous tremor amplitude and frequency at each joint. The use of 
multiple sensor modalities also permits us implementing fusion and redundancy techniques to enhance the 
dependability of the system, as it will be discussed below. 

 
Figure 35. Integration scheme for the sensor modalities of the BNCI. 
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This approach serves both to optimize user’s comfort and to minimize energy consumption, which is a critical 
aspect in all self-contained wearable devices. The benefits of the sensor fusion approach are two: 1) the patient 
will not be stimulated if tremor does not pose a functional issue, i.e. when there is no intention to perform a task, 
and 2) the patient is not stimulated in the absence of tremor, as tremor may not appear in certain patients during 
the execution of some tasks. 

This hierarchical integration scheme also implements a redundancy mechanism by which the TREMOR system 
can be triggered by the estimation of voluntary movement form sEMG (see section 3) in case the EEG algorithm 
to detect movement intention suffers a false negative. This simple solution enhances greatly the dependability of 
the system, since detection of voluntary movement from sEMG is very precise. 

6.2.  Sensor fusion approach 
The two major benefits from sensor fusion that we have identified are: 1) use of movement information to improve 
the performance of the EEG classifiers, enabling the implementation of a self-learning BCI, and 2) merge IMU 
and sEMG information to improve the performance of the tremor tracking algorithms, to tune the sEMG detection 
of tremor, and to compensate for delays on detection of tremor onset from sEMG information. The 
implementation of these ideas is detailed next. 

Fusion of EEG and movement information 
We have implemented a sensor fusion strategy for each movement intention classifier implemented: 

1. Fusion of EEG and IMU modalities in the context of implementing learning mechanisms in the single trial 
EEG classifier (CSIC). The Bayesian EEG classifier, adjusts its parameters, namely feature gain, mean 
and covariance of the probabilistic density function, in real-time, based on voluntary movement detected 
with the inertial sensors, Figure 36. 

 
Figure 36. Fusion of EEG and IMU modalities in the Bayesian classifier. Detection of movement onset is employed to 

adjust the parameters of the ERD classifier. 
2. Fusion of EEG and EMG modalities in the context of enhancing the robustness of ERD detection as an 

approach to detect movement intention (URT). This technique consists in recalculating, during the 
execution of the algorithm, the baseline associated with the no movement status, i.e. the reference with 
respect to which ERD is evaluated. This baseline is re-estimated in a dynamic window after movement 
offset as indicated by the deflection of EMG bursts, provided by Hodge’s algorithm, [15]. This hybrid 
version of the classifier led to higher classification rates than the EEG-based version, including a higher 
specificity. 

Fusion of sEMG and IMU information 
As said above, fusion of sEMG and IMU information aims at compensating for delays in the detection of tremor, 
and improving the performance of the algorithm to extract tremor features. 

1. Compensation of delays in tremor detection based on IMU recordings. Since the latency of the algorithm 
to detect tremor onset from sEMG is at least one tremor period, in some cases tremor may appear 
before the system receives the prediction (since the electromechanical delay can be less than a whole 
tremor period). Therefore, as the algorithm to calculate tremor features from the IMUs also estimates the 
voluntary component of the movement, we can use this as a redundancy mechanism to trigger the 
tremor suppression strategies. 

2. Fusion of sEMG and IMU information to improve tremor frequency estimation. Although the performance 
of the two stage algorithm in frequency tracking is considerably accurate, the WFLC has a settling time 
of some seconds, which is highly correlated to the difference between the initial frequency guess and the 
actual tremor frequency. Hence, using the estimation of tremor frequency provided by the IHT algorithm 
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as initial guess, we can reduce drastically this interval, given the high precision of the IHT, and thus of 
the initial conditions for the frequency estimation algorithm. 

7.  Conclusions 
This document describes the work carried under the framework of WP4 for the development of a multimodal BCI 
for real-time characterization of tremorous and concomitant voluntary movements to drive a tremor suppression 
neurorobot. This multimodal BNCI is implemented in a hierarchical approach, as described in the document, and 
implements the cognitive interaction (cHRI) between the user and the neurorobot developed in TREMOR. 

Results shown demonstrate the ability of the cHRI to predict user’s intention to perform a volitional movement, to 
detect the presence of tremor from sEMG, and to estimate its instantaneous amplitude and frequency out of 
kinematic information. Moreover, a number of features that will serve to enhance the reliability of the neurorobot 
were developed, for example: 1) taking advantage of the sEMG algorithm to estimate the onset of voluntary 
movement, to compensate for BCI based classification errors, 2) using the frequency estimation obtained by the 
IHT algorithm as an initial guess for the IMU based algorithm to track tremor features, 3) implementing machine 
learning techniques to adjust the parameters of the Bayesian classifier online, based on the execution of a 
voluntary movement. 

This multimodal approach represents a step forward in BCI field. The novelty of our concept is: 

- TREMOR concept tries to implement a self-training process through correlation of EEG-EMG. In our 
approach, the EEG baseline associated with the no movement status is updated online based on the 
information provided by EMG sensors. 

- The algorithm to detect movement intention that we have develop, constitutes a step forward in BCI 
Systems, since: 1) it is an asynchronous online system, 2) it does not require subject training, and 3) it 
has been validated with patients with neurological conditions, i.e. different types of tremors. 

- The multimodal BCI increases robustness of classical BCI systems through the use of redundant 
information at different stages of the neuromotor process: EEG (CNS), EMG (PNS) and IMU 
(biomechanics). 

- The fusion of EEG and IMU modalities implemented learning mechanisms for the single trial EEG 
classifier. The Bayesian classifier resulted in an adaptive system that try to cope with the variability in 
EEG. This approach improves the performance of the asynchronous classifier, since compensates for 
the non-stationary characteristics of EEG phenomena. 

- The fusion of EMG and IMU information provides precise characterization of both voluntary and 
tremolous movements in real time for every upper limb joint. 

- TREMOR concept reduces computational burden as each modality is prone to provide different kinds of 
knowledge in a computationally inexpensive manner: EMG for tremor onset, EEG for intentionality of 
limb motion, IMUs for tremor amplitude and frequency. This allowed the implementation of a truly Real 
Time system. 

According to Recommendation 3 of the First Annual Review meeting, which stated: “the project team is 
suggested to develop two prototypes in parallel. The first one would be the EEG-EMG-IMU based tremor 
compensation, as originally planned in the Description of Work, while the second one should be founded on EMG 
and IMU data only,” the consortium has decided to implements a redundancy mechanism by which the TREMOR 
system can be triggered by the estimation of voluntary movement form sEMG. This was implemented for the 
platform that will be founded on EMG and IMU data. 

Milestones M4.1.A, M4.1.B, M4.2.A, M4.2.B, M4.3, M4.4.A, M4.4.B, M4.5.A and M4.5.B have been met according 
to the results presented in this deliverable. Therefore, the BCI system has been optimized and implemented 
based on iterative process involving user trials. Notice that due to extension of the objectives of this WP in the 
framework of TREMOR-EEU extension, the work on this task will remain active, since the Consortium aims at 
improving the multimodal BCI part of the TREMOR system based on the results of TREMOR-EEU. 
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Annex 1. Estimation of cortico-muscular coherence (CMC) between EEG and EMG signals. 
Magnitude Squared Coherence (MSC) is a parameter used to assess the linear association between two signals 
in the frequency domain. It is expressed as the ratio between the cross spectrum of the two signals and the 
product of their auto spectra (see the MSC equation provided below). 

 
Cortico-muscular coherence (CMC) is an instance of MSC, when the two signal components are cortical EEG 
signal and rectified sEMG. Thus it represents a measure of coupling between the cortical activity as recorded 
from EEG in the cortical area and the muscular activity as extracted from rectifying the sEMG signal of a given 
muscle, [1]. Many studies in literature indicate that CMC contributions in the beta band (15-30 Hz) are related to 
the preparation of voluntary activity during sub-maximal contractions, [2], and represent the index of 
synchronization of motor units discharge at different frequencies, as elicited by the descending drives, [3]. 
Moreover, CMC contributions in the 5-12 Hz band have been associated to drives of physiological tremor, [4-5]. 
By monitoring over time the evolution of CMC in these two specific bandwidths it is possible to estimate the onset 
of voluntary activity and tremor, respectively.  

In order to timely estimate CMC, a method based on a bivariate auto-regressive (BAR) representation of the 
signals under analysis has been implemented in the framework of WP 4.1. Parameters of the BAR model are 
have been used to characterize a closed-loop representation of the generation of the two signals and to represent 
the evolution over time of CMC. The estimation underwent a thresholding procedure based on the significance 
assessment of CMC values: values below the estimated threshold were zeroed. The threshold estimation is 
based on the surrogate data analysis presented in [6]. When significant coherence values in the beta band 
appear for at least 200 ms, the beginning of voluntary activity is revealed, [7]. The same procedure can be 
applied in the 5-12 Hz band for the detection of tremor. 

 
Figure A. Top plot represents EMG with muscular activation as reference (red); middle plot represents CMC map; bottom 

plot represents EMG with output of the algorithm (black). 

Results obtained using this method showed significant contribution of CMC in the beta band around 1 second 
before the beginning of the voluntary movements in single wrist movement tasks. Nevertheless, the algorithm 
reveals beta band CMC contributions after the end of the movement, possibly associated with resynchronization 
of cortical activity. While this method is able to timely reveal   when dealing with simple wrist movements, it is 
here to be outlined that the computational cost for surrogate data analysis limits the real-time implementation of 
the method.  
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Annex 2. Analysis of different factors in the BCI prediction of voluntary movement. 
In order to evaluate possible relationships between the different pathologies causing tremor and the ERD 
features, an analysis of variance (ANOVA) has been performed on the data of all the experimental sessions 
carried out during the Tremor project involving EEG measurements while subjects performed self-paced 
movements of the dominant arm. The total dataset and the four factors considered are listed in Table A. 

 N 

Gender F 5 

M 15 

Age_Range 20-40 7 

40-65 4 

65-90 9 

Diagnosis C 6 

ESVO 1 

ET 8 

MT 1 

PD 3 

PTT 1 

Condition C 6 

P 14 

Table A. Inter-subjects factors. Diagnosis code: Control (C), Extrapyramidal Syndrome of Vascular Origin (ESVO), Essential 
Tremor (ET), Mixed Tremor (MT), Parkinson's disease (PD), Post-traumatic Tremor (PTT). Condition code: Control (C), 

Patient (P). 

The dependent variables extracted for each subject measured were:  

- ERD anticipation. The length of the interval from the time at which the average ERD shows a significant 
decrease to the movement onset). 

- Power decrease. Ratio between the movement state power spectrum and the basal state power 
spectrum at the frequency where the highest difference is found. 

- Frequency of the alpha rhythm. 

Results 
No statistically significant differences of the ERD characteristics were found between the control and patient 
groups as well as within the different tremor groups (different pathologies). Although it has been demonstrated 
that the ERD features in patients with Parkinson’s disease change with respect to healthy subjects, [77, 78], the 
data collected and used in this study did not show any such differences. This might be due to the lack of a sample 
dataset representative enough for each one of the groups considered. 

Only a significant difference between the power decrease of the patient groups above and below 65 years old 
was found (F=8.686, p=0.016, α = 0.05) (Table B). These results were expected a priori since the influence of the 
age on the sensorimotor rhythms desynchronization is well documented in the literature, [79]. 
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(I)Age_Range (J)Age_Range 

Means Differences 

(I-J) 

Typical 

error Sig. 

Confidence Interval 95% 

LowerLimit Upper Limit 

20-40 40-65 -4,4643 5,66710 ,719 -20,2869 11,3583 

65-90 11,5079 4,55652 ,076 -1,2139 24,2298 

40-65 20-40 4,4643 5,66710 ,719 -11,3583 20,2869 

65-90 15,9722* 5,43331 ,040 ,8024 31,1420 

65-90 20-40 -11,5079 4,55652 ,076 -24,2298 1,2139 

40-65 -15,9722* 5,43331 ,040 -31,1420 -,8024 

Table B. Multiple Comparisons for the ERD power decrease factor. Mean quadratic error = 81,750. *. α = 0,05. 
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